RayCore® Programming Guide

Version 1.0

SiLICONFIRTS

Copyrighf 2013 Siliconarts, Inc. All Rights Reserved.

This document is protected by copyright laws and contains proprietary materials to Siliconarts, Inc. It
or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast
or otherwise exjpited in any manner without the express prior written permission of Siliconarts. You
may use this specification for implementing the functionality therein, without altering or removing
any trademark, copyright or other notice from the specification,Hautdceipt or possession of this
specification does not convey any rights to reproduce, disclose, or distribute its contents, or to

manufacture, use, or sell anything that it may describe, in whole or in part.

Chapter 1
1.1
1.2
1.3
1.4

Chapter 2
2.1
2.2
2.3
24
2.5

Chapter 3
31
3.2

Chapter 4
4.1
4.2

Chapter 5
51
5.2
53
54
55

Chapter 6
6.1
6.2
6.3
6.4
6.5

Chapter 7
7.1
7.2

Contents

[N oo LU o] £ o] o R 5
Ray Tracing Algorithm.............cceeeiiiiii e 5
Ray Tracing With RaYCOf&.........ccocveiieieeeicceeee e 7
RAYCONE AP ..ot eeesee s eaeman e 10
TeIMINOIOGY. ... eveeieieeiiiiiie et 12

VIBWING .o 14
VIBW POINL....iiiiiiiiiiiiiiee e 14
Viewing VOIUME.........ovviiiiii e e 15
INILIANIZALION. ... 17
Unnecessary Projection MatriX...........ccceevvvvvvvvvieemeeeeennvnnnnnn. 18
Sample COUES........oovvecce e 18

Transformationcccccuueieiiiiiiiiiieeees 22
Model Transformation................uvveeiiieiieecreiiiiieeeeeeer e e e e 22
SAMPIE COUBS. ...ttt 26

Light SOUICE oo, 37
[To] o O d (o] o 1= o /RSPt 37
SF= 0 0] 0] [T @ To [S 39

TEXEUFE et 41
TeXture MapPing.........oocueeeieer e eeneeeees 41
Texture Filtering.. ... 43
TeXtUre ODJECES. ...t 45
Programimg.........oooviiiiiiiiiis s 46
SAMPIE COUBS....ceiiiiiiiiei e a7

Material........couvvveieii i 49
Material PrOPErtY........cooviuuiiieeiiiiiieriieeee e 49
(©70] (o] gl = (o] 1] £ YRR RUPROTPRRP 49
LIght PrOPEItY....cceii et 51
Programmilg...........ooueiiiiiiiiee e 53
Code EXample......cooiiiiiiiiiiceee e 54

DIraWing .ooooeeeeeeeeeeeeeeeeeeeee e 73
THANGIE. ...t 73

Creation of Triangles.............uuveiiiiiiiiiiiaeiiiiiiiiieieeeee e 76

Chapter 8 Rendering Start...........cccccvveeiiiiiiiiiiiiiiiiiiiiinnes 78

8.1 EXamPle........cooi i 78
Chapter 9 Static/Dynamic ObjJeCtS......cccceeeiiieeiiiiiiiieie e, 79
9.1 Object ClassifiCation.............ccuureriieriieeriiie e 80
9.2 Static Object Programming..........c.ooccvveeeeriiiemnniiieeee e 81
0.3 NS . 83
9.4 Sample Codes (Cornell BOX).......uuvevveeiieeieeeiiieesiiieeeeeeeeeeennn, 83
AppPENdiX A. FramMeEWOTKccciiiieiiee s e sttt e e e e s ssie e e e e e s s srnrnee e e e e e e anns 88
Appendix B. EXample Programsccccccuvveeeeeeiiisiiiieee e esinineee e e 90
1.1 CUDE ODJECL....eiiiieiiiiiiee et ee e 90
Appendix C. Earth EXample. ... 95
Appendix D. Program Development Environment Configuration 100
1.1 Development Environment Configuration for Linux............ 100
1.2 Development Environment Configuration in Windows....... 102
1.3 EGL Native Windows Configuration...............c.ccceevvvveee.... 103
1.4 EGL Configuration............ccuueeeieiiiiiimeniiieee e 104
1.5 Programming using RCFramework Class.............ccccoeeueeee. 105

1.6 General Programming Source Code..........ccccvveeiriieenninnn. 107

RayCore® Programming Guide Version 1.0

Chapter 1 Introduction

3D graphics is one of the computer technologies to gengfatmages. Despite its various benefits

in computer graphics, there are several technical barriers to processing 3D images in real applications.
One of the examples may be the significant amount of computational costs. Even though this
technical challenge kabeen partly alleviated by the increased performance of computer hardware,
3D graphics users have faced another challenge to enhance photorealistic qualities of images. Among
various ideas to overcome the difficulty, ray tracing has been introduced.

Although ray tracing algorithm was first introduced back in 1970s, it has been hardly applied to real
applications on redime basis due to the complexity of the algorithm as well as memory structure
required for considerable amounts of computation. In additiancreasing the degree of integration

in computer devices, many technical efforts for a high level of parallelization in rendering process
should have been implemented to make ray tracing a more practical technology. To realizereal
ray tracing redering, Siliconarts, Inc. has developed RayCpeerealtime ray tracing rendering
hardware.

1.1 Ray Tracing Algorithm

In computer graphics, ray tracing is a technique that generates an image by tracing the path of lights
through pixels in an image plane abg simulating various optical effects such as reflection,
refraction, transmission and shadow. Ray tracing is able to produce more vivid and realistic images
than typical scanlinerendering method. However, it also requires higher computational costs. As
result, ray tracing is better suited for application fields such as movies and TV programs where
photorealistic images may be produced regardless of long rendering ttiare,for realime

applications such as video games where rendering speed isantport

" Scanline algorithm _ an algorithm used to fill up the internal space of a triangle on a row by row basis.

5

RayCore® Programming Guide Version 1.0

The algorithm calculates the color of an object by casting a ray towards an object, passing through a
pixel in a screen. Each ray must undergo intersection test with all the objects it may collide in the
scene. Once the ray identifies the nearestabbiee algorithm performs lightingcalculation for the
incoming light at the point of intersection and applies the material properties of the object to decide
the preliminary color of the pixel. In addition, secondary ‘?a@nsa generated, depending ore th
reflective or refractive properties of the object, and the final color of the pixel is decided based on all
the information gathered from the intersections between the primary and secondary rays, and the
object.

Ray tracing algorithm assumes that rays amitted away from the camera rather than into it. And
this compares with how actual light works in reality. Assuming rays moving away from the camera is
more efficient than tracing the rays casted from a light solkeause forward simulation requires
significant computational efforts to calculate the light path, given that the majority of rays from a
light source do not travel directly into the came@me of the typical examples ofiis forward
simulation is photon mapping.

A simple way used in raydcing is to update the value of a pixel after calculating the ray for the
maximum number of reflection or searching for its certain travel distance without any intersection,
assuming that a given ray intersects view frame. The value of a pixel can batedldy various
types of algorithms including traditional rendering algorithm and radiosity algorithm.

a. Ray

A ray is an imaginary line that travels from a designated point in certain direction. In ray tracing
rendering, there are two types of rays: primay and secondary ray. Primary ray is a ray emitted
from the point to decide the initial value of a pixel. All rays besides primary rays are called
secondary rays.

b. Primary Ray

Primary ray is a ray generated from a camera to locate an object which didipgteeyed on a screen.
Secondary ray is generated based on the information on the intersection point between the ray and
the object, as well as the material property of the point. Also, primary ray is mainly responsible for
shaping the outline of the objec

Since each pixel is assigned with a single primary ray which decides its preliminary color, primary
ray is generated as many as the total number of pixels in a screen. Therefore, primary ray can be

" Lighting _ an algorithm, also known as illumination algorithm, which calculates the value of a pixel using light
sources, and the angles of incidence and reflection. Phong illumination is the most typical example and more

suited for real - time rendering than others.

’ Secondary ray _ rays generated to express the effects of reflection, refraction, transmittance and shadow.

6

RayCore® Programming Guide Version 1.0

considered as a ray generated solely for locating iecbwhich will be rendered on the screen.
Depending on the material propertafsanobjectand the location afhe intersection points between
the primary rayand the objec¢tadditional rays, defined as secondary rays, are generated.

c. Secondary Ray

All rays that are derived from primary sagire secondary rays including shadow, reflection and
refraction rays.

Shadow rag express shadow effects by identifying an occluding object in between the light source
and hit point. If no occluding object is idengifi, shadow rag/are responsible for gathering the
information needed for shading calculatfon the light source.

Reflection and refraction rays are additional rays generated to express reflection and refraction
effects depending on the material propertéan object.

1.2 Ray Tracing with RayCore®

RayCoré€ is a ray tracing accelerator for 3D graphics rendering, which is equipped with a fully
hardwired pipeline algorithmTypical data procegssy for ray tracing pipeline is shown below in
Figure 1. This algorithm requires significant computational time and costs due to its nature of
processing each unit in a chronological order and calculating all the rays including primary ray and
secondary ray in each unit. The pipeline consists of six units including rayagjen unit, traversal

unit, intersection test unit, Rgoint calculation unit, shading unit and texture mapping unit. A ray
generated towards the surface of a screen in ray generation unit explores the surface of the nearest
object in traversal unit. Iintersection test unit, the ray is further tested for intersection with objects,
followed by the calculation of an accurate intersection point between the ray and the objeets in hit
point calculation unit. A color of the intersection point is determimeshiading unit, and the texture
color of the intersection point is assigned in texture mapping unit. The last two units are sometimes
integrated for a simpler process.

RayCore® Programming Guide Version 1.0

Traversal

|ntersection Test

point C
il ghadi

Figure 1. Typical ray tracing pipeline

As mentioned above, primary are emitted fom a pixel in a screen, which may be further

dissipated into secondary rays including shadowg, naflection rag and refraction rag Additional

reflection and refraction occur as the secondary rays hit the surface of another object. The serial

derivaton of the additional rays makes ray tracing wor
procedure call, 0 and this has been a mdijneor bottl er

rendering process.

The hardwired pipeline that enables the @k rendering capability of RayC&rés shown in
Figure 2. T&I unit is designed to combine traverse unit and intersection test unit so that the
efficiency of each functioris improved In addition, RayCofe has multiple T& units in parallel
structure and is unique in that it processes different data concurrently by using MIMD architecture.

Figure 2. RayCoré’ pipeline

The hardware pipeline for RayCGreonsists of ray generation unit, T& unit, fibint calculation

unit and shading unit. T&l unit can be designed in multiple units and process different data

8

RayCore® Programming Guide Version 1.0

concurrently in parallel structure. Ray generation unit casts primasyaraly secondary rayfor all

the coordinates in a given screen bloE&J unit navigates objes that have been identified hyay

and examines if any intersection between the ray and the objects occurs. If an intersection is
observed, primitive data of the intersection point is transmitted {poinit calculation unit which
calculates the poindf intersection, or otherwise the whole process starts from the beginning for the
next coordinate. When T&I unit detects intersection, it transmits data to ray generation unit based on
the material property at the intersection point. Then, ray generatibemits second raysuch as
refraction rag or reflection rag which will go over the traverse process and the intersection test.
Shading unit utilizes Phong illumination model when deciding the color of the intersection point
calculated by hipoint catulation unit. When texture mapping has been implemented, the texture
coordinate and the texture data of the intersection point is used for texture mapping. Because
RayCoré is amenable to screen segmentation, setting up the system in parallel strudteseitma

supportaboveFull HD level resolution.

Figure 3. KD-Tree in a 3 dimensional space

a. Acceleration Structure

The application of acceleration structure is necessary foitimalray tracing rendering, given that
searching for a suitable triangle & critical factor in determining rendering performance.
Acceleration structure supports triangle searching process to make it faster and hence reinforces

improved rendering performance.

KD-Tree and Bounding Volume Hierarchy(BVH) are typical accelerationctstres used in ray
tracing. Even though they both demonstrate high speed and efficient performance in triangle

searching, RayCofeuses KDTree since it performs more efficiently in terms of rendering speed.

RayCore® Programming Guide Version 1.0

A\
/7 \

B

L
> ¢ B ©
<

O

Eg P ¢

Figure 4. BVH Diagram

KD-Tree is structurethy Binary Space PartitioningWhen a plane is partitioned into two different
spaces, a triangle may also be partitioned concurrently. In this case, the triangle can be shared by
both spaces Unlike KD-Tree, BVH uses Binary Object PartitionﬁngKD—Tree @ables higher
rendering speed; however, it takes longer time for building acceleration structure than does BVH.

Rasterization directly sends a triangle to the renderer instead of implementing acceleration structure
in rendering process. Hence, no functiexists to generate acceleration structure in rasterization.
However, in ray tracing, there exists a certain stage where the algorithm needs to start creating
acceleration structure. Since this stage cannot be automatically identified bscRAiRish() shauld

be called. After this function signals that all triangles are loaded, building acceleration structure

begins.

1.3 RayCore® API

RayCor€ API(Application Programming Interface) supports functions that are required in
programming ray tracing contents rendetsdRayCor&. Through this API, 3D modeling data is
transmitted to the rendefewhich processes the data to generate ray traced images.

RayCor€ API is designed familiarly to OpenGL ES 1.1. Also, the functions and parameters are
similarly defined as thosin OpenGL ES 1.1. However, since the rendering method of ray tracing

largely differs from that of rasterization, a few differences exist in between the two types of API.

Similarities and differences which RayCBréP! has in comparison to OpenGL ES 1. dhe

following:

: Binary Space Partitioning _ classifies objects in a space subdivided into different spaces.
Binary Object Partitioning _ classifies spaces in an object subdivided into different pieces.
Renderer _ a software or hardware device that generates images.

10

RayCore® Programming Guide Version 1.0

A Functions and programming methods are similar.

A Projection transformation is not used.

A Static or dynamic status of objects can be specified.

A When loading data is complete, the commencement of rendering should be identified.

In order to sethe information of textu® and material propertié,seach object isctivated by
binding its own nameRayCor& A P | uses prefixes O6RC6 for data type
way thatmodeling data is set HBgayCoré API is equivalent to hovit is set inOpenGL ES 1.1

In OpenGL, a viewpoint can be changed by utility library functions such as glut, implying that every
data can be transformed into normalized space. In Ra§@d& however, images are generated

with an object fixed at certajposition andwith a viewpoint moving relative to the object. In addition,
project transformation is avoided to eliminate every reloading of data. This way, static and dynamic
objects are classified. Once static objects are loaded in the beginning, thég maysed during the
rendering process without reloadifgynamicobjects, however, should be reloaded for every frame
with different acceleration structures created correspondingly. This process does not exist in OpenGL.
Even though reloading data for exy frame requires high computational complexity, backward
rendering in ray tracing is able to realize more efficient data processing even with the high

computational complexity.

To determine the final color of a pixel and the types of ray tracing etiedise expressed, material
propertesand texture must be set. When loading data is completed, RayCuiPé sends a signal to

RayCoré& to commence rendering process.

a. Programming Model

RayCoré€ API requires the following two stages in application prograngmin

A Initial setting for screen
A Loading rendering data

Initial settings for screen such as frustum and background color indicate data or setting that does not
change with frames. Sometimes, the setting for light sources can be considered as the inigal setti
given that the setting for light sources stays constant. Also, this setting may be used in loading
rendering data, because the decrease in processing speed it may cause is trivial. On the other hand,
the setting for texture data should always be initligal setting for screen. Technically, it is
plausible to change data for texture; however, it leads to diminishing speed of rendering speed due to

the time taken during the data conversion. To avoid the decline in rendering performance, texture

" Texture _ image data used in rendering with texture mapping method.
Material Property _ material property that creates effects such as reflection, refraction and transmittance in
addition to ambient, diffuse and s pecular effects from Phong shading.

11

RayCore® Programming Guide Version 1.0

data isloaded in the initial stage and reused during the following process.

If the material information used with texture data is set together, the usage of the material and texture
becomes easier. Setting the texture as one of the material properties is i@ #ffan setting the
texture and material separately. Therefore, it is strongly recommended to specify the material in
process of initial setting after loading the texture data.

Rendering data which contains dynamic data means that data is change@rfoframe. The
rendering model data is changed every tiberause the model is moved according to the user input

or the determined order. Even without any movement, this model data should be set continuously for
rendering. This process is repeated uh#l rendering application program is terminated. The texture
coordinates of the model is regarded as rendering data. If the light source and the view point are
changed, new data should be set all the time.

b. Object Naming

Certain data for determining its teixe and material property is set to an object which is assigned
with a specific name. First, texture object and material object are created. Then, each object is
assigned with a name in numbers and delivered to application programs. Using théheaohect

is activated, and its data is s€he texture and material may be specified in the following order:

1. Each object is created.

2. Among the created objects, an object is selected with a name which is granted during the creation
of the objects.

3. Data is loaded in the selected object.

4.When an objed activated by calling its nam#)e data loaded in the object can be used.

1.4 Terminology

Major terminologies used in RayC&rBrogramming Guide are defined as the following:

A Model i 3D data to be rendered into images.

A Object i a set of triangles. A group of objects and triangles or a group of objects can also
be defined as an object. The minimum unit of an object is a set of triangles containing one
material property. An object ithhe minimum unit has only one material property. If an
object has more than one material property, the object is divided into as many objects as the
number of material properties to compose an object in upper object class.

A Triangle i a polygon with an @a composed of three vertices. Data type used in
RayCore® rendering is in triangle.

12

RayCore® Programming Guide Version 1.0

A Primitive i a primitive polygon used in the rendering process of RayCore® . Primitive is a
native terminology for RayCore® and equivalent to triangle.

A Texture i image dataxpressing the texture of an object.
A Material Properties i Properties of a material. Properties of the color and texture of an

object. Properties of reflection, refraction and transmittance. A set of properties that
respond to lights.

13

RayCore® Programming Guide Version 1.0

Chapter 2 Viewing

Viewing an object requires various types of information among which view point and viewing
volume may be typical examples. As one of the most basic elements in viewing, view point indicates
the information of a viewer such as an imaginary eye or camer@ing volume, on the other hand,
implies the quantitative value of a region of space in which an object can be seen. This chapter
explains what roles view point and viewing volume play in and how their settings can be applied to
3D graphics. In additionhe results of data processing foew point and viewing volumevill be

coveredn this chapter.

2.1 View Point

View point has the information needed to observe an object in a 3 dimensional space. The
information includes the location afviewer as well as #hdirection and the regiasf viewing, all of
which allow the object to become visible. The following functions are called to provide the settings

for view point.

void rcuLookAt (RCfloateyex RCfloateyey RCfloateyez
RCfloatcenterx RCfloatcentery RCfloatcenterz
RCfloatupx RCfloatupy, RCfloatup32);

Coordinates of the view point and the reference pointldector are set. The position off
view point indicates the coordinate of the view point in a 3 dimensional spaceefEhence
point indicates the center of screen, and is used to calculate a vector moving from the vid
to that reference pointP vector assigns the elements of the vector, indicating which dirg]
is upward and perpendicular to the view point.

14

RayCore® Programming Guide Version 1.0

Examplel

rcuLookAt(0, 0, 0, 0, 01, 0, 1, 0);

The coordinate of the view point and the center of screen are (0, 0, 0) andljde8pectively. And,
the UP vector is heading towards the positive directiothe y-axis with a unit magnitude. This is a
default setting in RayCofeAPI and will not bechanged unless new setting is made.

Example 2

rcuLookAt(1, 1, 1,0, 0, 01, 1,-1);

The coordinate of the view point and the center of screen are (1, 1, 1) and (0, 0, 0) respectively. And,
the UP vector is heading towards the coordinate -Gf (., -1). Once view point is set, setting the
viewing volume must be followed.

2.2 Viewing Volume

Viewing volume implies the region of a space where an object is present to appear in the display.

Vi ewer 6s position and viewing diease¢he space mwliche det er m
objects are present is set by viewing volume, also known as view frustum. The visual field is divided

into two different spaces where an object can be seen in one space but is not detected in the other.

a. Resolution

Images are creatday rays emitted within viewing volume. Resolution, expressed by the number of
pixels composing a single screen, determines the number of rays generated. Resolution can be set by
calling rcViewport().

void rcViewport (RCintx, RCinty, RCsizeiwidth, RCsizeiheigh);

rcViewport() Sets resolution. The resolution verifies the number of pixels in a screen and
the number of primary rays generated. The current version of Ray@Biedoes not use x an
y values. The width and height of final imagee set byvidth andheightrespectively.

Default resolution is 800x480. IfcViewport() is not used, images are created in the default
resolution. In addition to determining the number of primary rays, this default resolution decides the

initial direction of the rays and calculates the variation in the emission angles.

15

RayCore® Programming Guide Version 1.0
b. Frustum Setting
Frustum indicates the region of which an object will be shown based on the viewing direction.
rcFrustum() andrcuPerspective(set the information of frustum.

i. Direct Frustum Setting

rcFrustum() is a function that directly sets the information of frustum.

void rcFrustum (RCdoubléleft, RCdoubleight,
RCdoublebottom RCdoubleop,
RCdoublezNear RCdoublezFar);

rcFrustum() appoints the size of clipping plane expressedelty right, bottomandtop. Also,
this function defines the distamdrom the view point to the clipping planes in long and s
distancezFaris not used.

The values specified by above functions are used to calculate the direction of the first ray. The
directions of next rays are calculated by the differenaniission angles, and this calculation needs

to be performed in the beginning of initial screen setting. The values can be reused @uless vi
frustum is changed.

rcFrustum<{1, 1,-1, 1, 1, 1000);

Above code demonstrates the example of setting the sizelippang plane in one unit distance. The
width and height of the plane is one unit each, and the near distance is one unit. The value for the
long distance among the above parameters is notingagy tracing.

Figure 5. View frustum

ii. Aspect ratio 8tting

16

RayCore® Programming Guide Version 1.0

SincercFrustum() sets the region of frustum with actual values, final images may be seen distorted
when the aspect ratio changes. HemcePerspective()s used to fix the aspect ratio of frustum and
avoid the distortion.

void rcuPerspective (RCfloatfov, RCdoubleaspect
RCfloatzNear RCdoublezFar);

Vertical fo(field of view) andaspectvalue are setfov and aspectvalue derive the width o
frustum.zNearandzFar are equivalent to the parameters of rcFrustum function.

The field of viewfov indicates the viewable region with degree of angle, and its range is in between
0 e a n th vettiBaDagisfov provides the information to derive the height and the agspéiot of
frustum, with which the width of the frustum can be calculated.

aspectindicates the ratio of width relative to the height of frustum. Frustum with a fixed aspect ratio
can keep the constant ratio between the screen and the object.

RayCor€ API does not create projection matrices when setting the valuef®¥and aspect In

general, rasterization method projects all objects into a normalized space through projection matrices.
These projection matrices are used together with transformation reati@n modeling coordinate
system is converted intthe world coordinate system. However, this processias used in ray
tracing.

Figure 6. Frustum with fov and aspect

2.3 Initialization

17

RayCore® Programming Guide Version 1.0

The most important settings that need to be initialized irtraing are the settings for view point
and frustum. Initialization can be executed by the functions explained above.

2.4 Unnecessary Projection Matrix

In order to generate 3D graphics images, the coordinates of the vertices for triangles in a three
dimensionaspace are needed. Matrices are useful to efficiently manage the coordinate information.
When the coordinate information is transformed using matrices, an object is relocated. These
coordinate transformation matrices can also be applied to a three dinadrsgiace.

Transforming the coordinates into the world coordinate systerksthe same in both rasterization

and ray tracing. However, projection transformation is performed differentlyrasgterization
PROJECTION_MATRIX mode enables processing for jeaion transformation under
rasterization method. Projection matrices set in that mode relocate all objects to a normalized cube.
Only objects inside the cube are rendered. The space where an object is seen is determined by

viewing volume.

Ray tracing mdtod does not perform projection transformation. Instead, projection effects are
expressed by the generation of rays. Objects are projected by generating rays emitted towards each
pixel in a screen. This way, ray tracing produces effects equivalent todtezged by rasterization

that uses projection matrices.

2.5 Sample Codes
a. Frustum by FOV

Basic settings are the following:

A Setting for background color

A Setting for screen resolution

A Setting for frustum by FOV

A Setting for the position of view point and ttigection of viewing

Sample codearethe following:

{
rcClearColor(0.73f, 0.2f, 0.23f, 1.0f);
rcViewport(0, 0, 800, 480);
rcuPerspective(60.0f, 800.0f / 480.0f, 0.1f, 100.0f);
rcuLookAt(0, 0, 1, 0, 0, 0, 0, 1, 0);
}

18

RayCore® Programming Guide Version 1.0

Background color setting for the red, green and blue are 0.73, 0.2 and 0.23 respéatiieiiyxed
at 6@ , and the r at i aspecfThetstreen is distaet &am the siewspeint by .1,
and the maximum range is set to 100.

The renderig result is shown in figure 7. Programming method to draw the triangle will be
explained in a later chapter. Since frustum is sdbigythe shape of the triangle is not distorted.

Figure 7. Standard triangle drawn with fov setting

b. Frustum by Values

Below is the setting fofrustum based on actuahlues

A Frustum is set based on actual values.

Sample codearethe following:

{
rcClearColor(0.73f, 0.2f, 0.23f, 1.0f);
rcViewport(0, 0, 800, 480);
rcFrustumf(0.1, 0.1,-0.1, 0.1, 0.1, 100);
rcuLookAt(0,0, 1, 0, 0, 0, 0, 1, 0);

}

The screen is distant from the view point by 0.1. Top and bottom value are set to GQland
respectively. Left and right value are set-€01 and 0.1 respectively. Using the ratio between the
width and height of the screen gives an equivalent resafitniay be produced with frustum set by

fov.

Below is the rendering result with frustum set by values. This setting ignores the fixed ratio between

19

RayCore® Programming Guide Version 1.0

the height and width of the screen, and therefore the image looks distorted relative to the image
produced bysingrcPerspective

Figure 8. Standard triangle drawn with frustum setting by values

c. Viewpoint Position

The position of a viewpoint can be chaddpy callingrcuLookAt().

A Transform the position of a viewpoint

Sample codearethe following:

{
rcCleacColor(0.73f, 0.2f, 0.23f, 1.0f);
rcViewport(0, 0, 800, 480);
rcuPerspective(60.0f, 800.0f / 480.0f, 0.1f, 100.0f);
rcuLookAt(0.3,0,1,0,0,0,0, 1, 0);
}

The viewpoint is shifted to the-axis by 0.3. The viewing direction stays the same. Emglering

result is shown below.

20

RayCore® Programming Guide Version 1.0

Figure 9. Standard triangle with the changed position of the viewpoint

21

RayCore® Programming Guide Version 1.0

Chapter 3 Transformation

An individual object is composed in its own model coordinate system. And, a group of the objects is
transformed into the world coordinate system. This transformation is achieved by transforming the

coordinates of vertices. In addition, transformation is applied to the translation of objects.

RayCoré€ API supports functions that are used in transformimegapordinates. There are three types
of coordinate transformation: translation, rotation and scaling. Each transformation is performed by

matrix multiplication, and a matrix is structured in 4x4 to allow affine transformation.

3.1 Model Transformation

Sixteenelements in a matrix are arrayed in column major order.

QO
a9 o o
QL Qa0
Q- Q- Q- Q

a. Translation
Transl ation of an object depends on the direction
direction of translation idetermined by axes, and tt@mount of movement is expressed in

magnitude.

Below is a sample translation matrix:

22

RayCore® Programming Guide Version 1.0

43 37°
443 °HA4d
4°© 34
o O 00

The following function executes translation:

An object is translated by y, z units about each corresponding axis.

Figure 10. Translation

b. Rotation

Rotation requires the information of how much an object will be rotated to which direction. Rotation
axis cannot be randomly chosen. One ofdRkes in the coordinate system should be selected as a
base axis.

23

RayCore® Programming Guide Version 1.0

Figure 11. Rotation

Sample rotation matrices are shown beloy.R and R indicate the rotation matrion x-axis, y-axis
and zaxis respectively.

p T T T
y — T AI© OEln
mnm OB+ AlOm

m T’ T p
Ai-On OEF m

v _ @m,p _m.m
OB+ m Al©OT

i T TP

AT-0 OBEfl nm ¢

v OEF AT n
i i p T

i i T p

The following function executes rotation:

Base axis for rotation is set Byy or z. This function executes the rotation of an objecabgle
Z about the corresponding axis in courtkrck wise direction.

c. Scaling

Scaling modifies the size of an object. Scaling mu#gd coordinate by certain value.

24

RayCore® Programming Guide Version 1.0

Below is the example of a scalingatrix:

443 3<
243 <3
24 <4314
° g 34

The following function executes scaling:

void rcScalef(RCfloatx, RCfloaty, RCfloatz);

An object may be enlarged or condensed, depending on the input walyez)(indicates an
input value that changes the sifean object about the origin.

If the object stays off the origin, the scaled object is not enlarged or condensed in exact proportion to
the input value; instead, it is scaled in proportion to the distance between the object and the origin.

d. Matrix Transformation

When users create their own model matrix in programming applications, model transformation
matrix can be modified by corresponding matrix data. In addition, matrix multiplication can create
totally new matrix by applying the combination betabove transformation functions. Newly created
matrix may be assigned to the existing matrix or multiplied by the existing model transformation
matrix to become new model transformation matrix. Fmatelmatrix can be confirmed by calling
rcGey).

void rcLoadMatrixf (const RCfloat m);

Matrix data is loaded. Matrix dataindicates the pointer value representing the data of a m
which is stored in column major order. Data size should be represented by 16 elements,
data replaces the @efor the existing model transformation matrix.

void rcMultMatrixf (const RCfloat m);

The input matrix datanis equal to that of the above. By multiplying this data with the exis
model transformation matrix, a new matrix is created.

e. Push / Pop Matrix

Final transformation matrix is composed by the multiplications of various matrices that are created
by multiple transformations. In order to undo the multiplications, inverse matrix is multiplied.
However, forminga 4x4 matrix for the multiplications of the inverse matrix is inefficient. Therefore,
original matrix is saved in memory and loaded back whenever needed. This way, recalculation of the
matrix is avoided. Matrix stack allows the process of saving and loategnatrix, which is

25

RayCore® Programming Guide Version 1.0

controlled byrcPushMatrix() andrcPopMatrix().

f. Matrix Stack

Transformation can easily apply to an object model in hierarchical structure such as in solar system
with the push/pop method. The solar system is a good example. Ear#s mrtaund the Sun, and the
Moon rotates around Earth. If the Sun is not indtigin of the coordinate system, the Sun should be
relocated to therigin, and Earth starts to rotate around ¢higin. And this explanation also applies

to the relationshifpetween Earth and the Moon. However, if Mars is introduced in the example, it
gets more complicated. One way to resolve this is to change the position of the Sun and let the Mars
rotate around therigin. And then, a translation matrix that brings themkiiacthe original position

may be multiplied with a rotation matrix that allows the rotation of the Mars. The other method is to
reuse matrix data stored in stack memory. The first method is to create new transformation matrix
using the functions explaineabove. And the second method is to store the current matrix in stack
memory and load back by calling the functions below when needed.

void rcPushMatrix (void);

Current transformation matrix is stored in stack memory.

rcPushMatrix() stores the current settings for the matrix and load back when needed.

void rcPopMatrix (void);

Matrix saved in stack memory is loaded as transformation matrix.

Transformation restarts from the previous matrix.

3.2 Sample Codes

a. Translation

Sample codes fdranslation are the following:
#include "RCFramework.h"
/I Programming GuideTranslate
struct Pos {

float x, y, z;

}

26

RayCore® Programming Guide Version 1.0

RCubyte g_cubelndices[] = {
0,1, 2,
3

struct Pos g_TrianglePos[] = {
{0.0f, 1.0f, 0.0f}, //0O
{-1.0f,-1.0f, 0.0f}, // 1
{1.0f, -1.0f, 0.0f}, // 2
2

class Tutorial : public RCFramework

{

public:
Tutorial(void) : RCFramework("Programming Guid&ranslate”800, 480){}
virtual ~Tutorial(void){}

void StaticSceneDraw(void){
rcStaticSceneBegin();

rcMatrixMode(RC_MODELVIEW);
rcLoadldentity();

rcTranslatef(1.0f, 1.0f, 0.0f);
rcEnableClientState(RC_VERTEX_ARRAY);

float color[4]={1,1,0,0};
rcDisable(RC_TEXTURE_2D);

rcVertexPointer(3, RC_FLOAT, 0, g_TrianglePos);

rcBindMaterial(1);

rcMaterialfv(RC_FRONT_AND_BACK, RC_AMBIENT_AND_DIFFUSEolor);
rcDrawElements(RC_TRIANGLE_FAN, 3, RC_UNSIGNED_BY;Td cubelndices);

rcStaticSceneEnd();
}

void DynamicSceneDraw(void){}

protected:
virtual BOOL Onlntialize(void){
rcSceneAlllnit();

{
rcClearColor(0.73f, 0.2f, 0.23f, 1.0f);

rcViewport(0, 0, Width(), Height());

rcMatrixMode(RC_PROJECTION);

rcLoadldentity();

rcuPerspective(60.0f, (RCfloat)Width() / (RCfloat)Heigh€@(}1f, 100.0f);
rcuLookAt(0, 0, 4, 0,0, @, 1, 0);

StaticSceneDraw();

}

return TRUE;

27

RayCore® Programming Guide Version 1.0

virtual BOOL OnDraw(void){
static inti = 0;
i++; // 3 times loop with each color.
if(IsTestMode() && i>3) return FALSE;

DynamicSceneDraw();

return TRUE;

}
h

Tutorial g_Tutorial;

The object is translated by 1 to the positivaxis and 1 to the positiveaxis. The triangle is moved
from the center as shown below.

Figure 12. Translation

b. Rotation

Sample codes for rotation are the following:

#include "RCFramework.h"
/I Programming Guide Rotate

struct Pos {
float x, y, z;

I3

RCubyte g_cubelndices[] = {
0,1,2,
h

28

RayCore® Programming Guide Version 1.0

struct Pos g_TrianglePos[] = {
{0.0f, 1.0f, 0.0f}, //0O
{-1.0f,-1.0f, 0.0f}, // 1
{1.0f, -1.0f, 0.0}, //2

I3

class Tutorial : publi@CFramework

{

public:
Tutorial(void) : RCFramework("Programming GuidRotate", 800, 480){}
virtual ~Tutorial(void){}

void StaticSceneDraw(void){
rcStaticSceneBegin();

rcMatrixMode(RC_MODELVIEW);
rcLoadldentity();

rcRotatef(45, 0, 0, 1);

rcEnableClientState(RC_VERTEX_ARRAY);

float color[4]={1, 1,0, O};

rcDisable(RC_TEXTURE_2D);

rcVertexPointer(3, RC_FLOAT, 0, g_TrianglePos);

rcBindMaterial(1);

rcMaterialfvy(RC_FRONT_AND_BACK, RC_AMBIENT_AND_DIFFUSE, color);

rcDrawElements(RC_TRIANGLE_FAN, 3, RC_UNSIGNED_BYTE, g_cubelndices);

rcStaticSceneEnd();

void DynamicSceneDraw(void){}

protected:
virtual BOOL Onlintialize(void){
rcSceneAlllnit();

{
rcClearColor(0.73f, 0.2f, 0.23f, 1.0f);
rcViewport(0,0, Width(), Height());

rcMatrixMode(RC_PROJECTION);

rcLoadldentity();

rcuPerspective(60.0f, (RCfloat)Width() / (RCfloat)Height(),0.1f, 100.0f);
rcuLookAt(0, 0, 4,0, 0, 0, 0, 1, 0);

StaticSceneDraw();
return TRUE;

virtual BOOL OnDraw(void){
static inti = 0;
i++; // 3 times loop with each color.

29

if(IsTestMode() && i>3) return FALSE;
DynamicSceneDraw();

return TRUE;

}
h

Tutorial g_Tutorial;

Thetriangle is rotated by 45 a b-axis &s shiown below.

RayCore® Programming Guide Version 1.0

Figure 13. Rotation

c. Scaling

Sample codes for scaling are the following:

#include "RCFramework.h"
/I Programming Guide Scale

struct Pos {
float x, y, z;

I3

RCubyte g_cubelndices[] = {
0,1,2,
b

struct Pos g_TrianglePos[] = {
{0.0f, 1.0f, 0.0f}, //0
{-1.0f,-1.0f, 0.0f}, // 1
{1.0f, -1.0f, 0.0f}, // 2

I

30

RayCore® Programming Guide Version 1.0

class Tutorial : public RCFramework

{

public:
Tutorial(void) : RCFramework("Programming Guid&cale", 800, 480){}
virtual ~Tutorial(void){}

void StaticSceneDraw(void){
rcStaticSceneBegirny()

rcMatrixMode(RC_MODELVIEW);
rcLoadldentity();

rcScalef(2.0f, 2.0f, 1.0f);

rcEnableClientState(RC_VERTEX_ARRAY);

float color[4]={1, 1, 0, 0};

rcDisable(RC_TEXTURE_2D);

rcVertexPointer(3, RC_FLOAT, 0, g_TrianglePos);

rcBindMaterial(1);

rcMaterialfv(RC_FRONT_AND_BACK, RC_AMBIENT_AND_DIFFUSE, color);

rcDrawElements(RC_TRIANGLE_FAN, 3, RC_UNSIGNED_BYTE, g_cubelndices);

rcStaticSceneEnd();
}

void DynamicSceneDraw(void){}

protected:
virtual BOOL Onlintialize(void{
rcSceneAlllnit();

rcClearColor(0.73f, 0.2f, 0.23f, 1.0f);
rcViewport(0, 0, Width(), Height());

rcMatrixMode(RC_PROJECTION);

rcLoadldentity();

rcuPerspective(60.0f, (RCfloat)Width() / (RCfloat)Heigh€@(1f, 100.0f);
rcuLookAt(, 0, 4, 0, 0, 0, 0, 1, 0);

StaticSceneDraw();

return TRUE;

virtual BOOL OnDraw(void){
static int i = 0;
i++; // 3 times loop with each color.
if(IsTestMode() && i>3) return FALSE;

DynamicSceneDraw();

return TRUE;

31

RayCore® Programming Guide Version 1.0

}
h

Tutorial ~ g_Tutorial;

The size is enlarged twice the original size abeaxkis and yaxis as shown below:

Figure 14. Scaling

If the input value is less than 1, the triangle is condensed. If the input value is 0, there will be no
triangle displayedince all the vertices will be moved to the origin of each axis.

d. Mixed Transformation 1 (Translation After Rotation)

Translation after rotation and rotation after translation provide different results. Below is the example
of translating a triangle by 1wards the positive side ofxxi s after rot-axisi ng by 90
Here, the transformation matrices are multiplied to the right side of the base matrix.

#include "RCFramework.h"
/I Programming Guide Transform(Rotate, Translate)

struct Pos {
floatx, y, z;

I

RCubyte g_cubelndices]] = {
0,1, 2,
I3

struct Pos g_TrianglePos[] = {
{0.0f, 1.0f, 0.0f}, //0
{-1.0f,-1.0f, 0.0f}, // 1
{1.0f, -1.0f, 0.0f}, // 2

32

RayCore® Programming Guide Version 1.0

h

class Tutorial : public RCFramework

{

public:
Tutorial(void) : RCFramework("Progmming Guide Transform(Rotate, Translate)", 800, 480){}
virtual ~Tutorial(void){}

void StaticSceneDraw(void){
rcStaticSceneBegin();

rcMatrixMode(RC_MODELVIEW);

rcLoadldentity();

rcTranslatef(1, 0, 0);

rcRotatef(90, 0, 0, 1);

rcEnableClientState(RC_VERTEX_ARRAY);

float color[4]={1, 1, 0, 0};

rcDisable(RC_TEXTURE_2D);

rcVertexPointer(3, RC_FLOAT, 0, g_TrianglePos);

rcBindMaterial(1);

rcMaterialfv(RC_FRONT_AND_BACK, RC_AMBIENT_AND_DIFFUSE, color);

rcDrawElements(RCTRIANGLE_FAN, 3, RC_UNSIGNED_BYTE, g_cubelndices);

rcStaticSceneEnd();

void DynamicSceneDraw(void){}

protected:
virtual BOOL Onlintialize(void){
rcSceneAlllnit();

rcClearColor(0.73f, 0.2f, 0.23f, 1.0f);
rcViewport(0, 0, Width()Height());

rcMatrixMode(RC_PROJECTION);

rcLoadldentity();

rcuPerspective(60.0f, (RCfloat)Width() / (RCfloat)Heigh@)1f, 100.0f);
rcuLookAt(0, 0, 4,0, 0, 0, 0, 1, 0);

StaticSceneDraw();

return TRUE;

virtual BOOL OnDraw(véd){
static inti = 0;
i++; // 3 times loop with each color.
if(IsTestMode() && i>3) return FALSE;

33

DynamicSceneDraw();

return TRUE;

}
h

Tutorial g_Tutorial;

The final image is rendered as shown below.

RayCore® Programming Guide Version 1.0

Figure 15. Mixed transformation 1 (translation after rotation)

e. Mixed Transformation 2 (Rotation After Translation)

Translation of a triangle is performed first, followed by rotation. The resulting image looks different

from that of the previous example.

#include "RCFramework.h"

/I Progamming Guide Transform(Translate, Rotate)

struct Pos {
float x, y, z;

I3

RCubyte g_cubelndices[] = {
0,1,2,
b

struct Pos g_TrianglePos[] = {
{0.0f, 1.0f, 0.0f}, //0
{-1.0f,-1.0f, 0.0f}, // 1
{1.0f, -1.0f, 0.0f}, // 2

I3

RayCore® Programming Guide Version 1.0

class Tutorial public RCFramework

{

public:
Tutorial(void) : RCFramework("Programming Guid&ransform(Translate, Rotate)", 800, 480){}
virtual ~Tutorial(void){}

void StaticSceneDraw(void){
rcStaticSceneBegin();

rcMatrixMode(RC_MODELVIEW);
rcLoadldentity();

rcRotatef(90, 0, 0, 1);
rcTranslatef(1, 0, 0);

rcEnableClientState(RC_VERTEX_ARRAY);

float color[4]={1, 1, 0, 0};

rcDisable(RC_TEXTURE_2D);

rcVertexPointer(3, RC_FLOAT, 0, g_TrianglePos);

rcBindMaterial(1);

rcMaterialfv(RC_FRONT_AND_BCK, RC_AMBIENT_AND_DIFFUSE color);

rcDrawElements(RC_TRIANGLE_FAN, 3, RC_UNSIGNED_BYTE, g_cubelndices);

rcStaticSceneEnd();
}

void DynamicSceneDraw(void){}

protected:
virtual BOOL Onlintialize(void){
rcSceneAlllnit();

rcClearColor(0.73f, 0.2f, 0.23f, 1.0f);
rcViewport(0, 0, Width(), Height());

rcMatrixMode(RC_PROJECTION);

rcLoadldentity();

rcuPerspective(60.0f, (RCfloat)Width() / (RCfloat)Heigh€@(1f, 100.0f);
rcuLookAt(0, 0, 4,0, 0, 0, 0, 1, 0);

StaticSceneDraw();

return TRUE;

virtual BOOL OnDraw(void){
static inti = 0;
i++; // 3 times loop with each color.
if(IsTestMode() && i>3) return FALSE;

DynamicSceneDraw();

35

RayCore® Programming Guide Version 1.0

return TRUE;

}
h

Tutorial g_Tutorial;

The triangle is first translated by 1 towards the positive direction-afxxi s and then rotated
about zaxis. The resulting image looks the same as the image that would have been generated if the
triangle is translated by 1 towards the positive sidgafx i s af t er bei ngaxis.ot ated by

Figure 16. Mixed transformation 2 (rotation after translation)

As shown in the mixed transformation 1 and fidal images largely depend on the order of
transformations.

36

RayCore® Programming Guide Version 1.0

Chapter 4 Light Source

Light is another major subject in ray tracing rendering. If lights do not exist, objects cannot be
identified. This chapter explains the settings of light source and their implications.

4.1 Light Property

The following is the list of light propeds:

A Position

A Type

A Ambient property
A Diffuse property
A Specular property
A Direction vector
A Spot light

a. Position and Type of Light Source

The position of light source can be defined as (x, y, z, w), where (X, y, z) means the position in a 3

dimensional spacand w indicates the type of light source.

Light source can be either fixed at certain position or changed in every frame. In the situation where
its position changes with every frame, changing the position can be made by setting new input values
or using acoordinate transformation function. Since light source is considered as a rendering object,

applying transformation matrix to light source is valid.

: Spot light _ a light that focuses on a small area to increase the level of concentration.

37

RayCore® Programming Guide Version 1.0

Light source can be divided into two different types: point light source and directional light source.
The sun in the solar system is a good example of point light source which is a type of light source
that emits light into random directions. Lighting calculation is performed with an arbitrary direction
vector originated from the position of light source.

On the other hand, directional light source has its unique direction. Instead of the position of light
source, a direction vector is used in lighting calculation.

b. Light Property

For lighting calculation, a certain property is assigned to light source. Ambiéfose and specular
are the examples of light properties. Each of them specifies the material property caused by light.

Further details will be explained in later chapter after material property is covered.

c. Spot Light

Spot light is a unique example obipt light source. Focusing on small part of the area with its
unique position and direction, the light is expressed in a cone shape.

Figure 17. Spot light

d. Attenuation

When light source is far away from an object, light can be attenuated by distatiuis. dase, the

intensity of attenuation can be specified. The following three are the attenuation types:

A Constant attenuation
A Linear attenuation
A Quadratic attenuation

e. Programming

The following is the list of light source settings:

38

RayCore® Programming Guide Version 1.0

A Light source can be usedly if lighting is enabled.

A Default light source is used when lighting is disabled or separate light source is not set.
A The maximum number of light source is 8.

A Onloff setting is applied to individual light source.

Light source setting is made by theldoling settings:

void rcLightv (RCenumlight, RCenunpname const RCfloat paramg;
void rcLight (RCenumlight, RCenunpname const RCfloaparam;

Light source is set by the above functiolight decides which light source will be activate
Pname assigns the properties of light source. The RGB color properties are g

RC_POSITION, RC_AMBIENT, RC_DIFFUSE, RC_SPECULA
RC_SPOT_DIRECTION, RC_SPOT_EXPONENT, RC_INNER_COIl
RC_OUTER_CONE, RC_ATTENUATION_RANGE, RC_START_ATTENUATION
RC_END_ATTENUATION RC_CONSTANT_ATTENUATION,
RC_LINEAR_ATTENUATION, RC_QUADRIC_ATTENUATION. Input values are set
paramsor param.

4.2 Sample Codes

Below sample codes are used for the example in Appendix C. Textures are used to express the earth,
and light source is rotated

a. Initialization of Light Source

Light source is initialized.

rcEnable(RC_LIGHTING);

i=0;

while(i < sceneData.m_lightCount) {
RCenum lightNumber = RC_LIGHTO + i;

if(i < sceneData.m_lightCount) {
rcEnable(lightNumber);

sceneData.m_light[i].pos.w = 1;
sceneData.m_light[i].posx 15;

rcLightfv(lightNumber, RC_POSITION, &sceneData.m_light[i].pos.x);
rcLightfv(lightNumber, RC_AMBIENT, &sceneData.m_light[i].ambient.r);
rcLightfv(lightNumber, RC_DIFFUSE&sceneData.m_light[i].diffuse.r);
rcLightfv(lightNumber, RC_SPECULAR, &sceneData.m_light[i].specular.r);
i++;

)

39

RayCore® Programming Guide Version 1.0

Each light source is activated after the setting for lighting is made. And then, the properties of each
light source are set.

b. Rotation of Light Source

Light source is rotated by transformation matrices.

rcMatrixMode(RC_MODELVIEW);
rcLoadldentity();

rcPushMatrix();

rcRotatef(g_turn, 0, 1, 0);

rcLightfv(RC_LIGHTO, RC_POSITION, &sceneData.m_light[i].pos.x);
rcPopMatrix();

If the transformation matrix is already created, the value for the position of light source and the
transformation matrix are multiplied each other to determine the new position of the light source.

40

RayCore® Programming Guide Version 1.0

Chapter 5 Texture

Texture mapping i®ne of the necessary processes in 3D graphics to efficiently generate realistic
images. This chapter introduces the functions and applications of texture mapping.

5.1 Texture Mapping

It is almost impossible to model photorealistic objects only with polygdmis.i3 mainly because the
significant number of polygons used to generate such objects requires massive computational
calculations that may not be satisfied by the capabilities of current computer hardware. In addition,
reattime rendering in 3D graphicshesuld accompany the process of reducing the size of data.
Instead of modeling each object in geometric shape, overlaying an image on an object can resolve the
technical challenge. Also, overlaying an image allows texture expression on the object and thereb
adds more realism. Texture mapping has become an essential element in the current generation of 3D
graphics.

In texture mapping, the texture coordinates of vertices should be secured, and a particular image
should be selected as a texture image. Imagesgpress the texture of an object or provide visual

expression in certain shapes.

The number of texture images used is limited, and an object is specified with a particular ID.
Loading texture data every time significantly lowers the performance oftimal processing;

therefore, it should be loaded in the initialization of 3D data.

a. Texture Data

Texture data is expressed in 2D images. Image data expresses the texture of triangles or certain

objects. It is almost impossible to express texture with geaméata such as triangle. Texture

41

RayCore® Programming Guide Version 1.0

mapping is essentially useful since it allows the expression of texture in addition to reducing the

amount of data for redalme rendering.

Figure 18. Texture images

Using the images above leads to the simplificatiomotieling. Photos or realistic images are used

to enhance the quality of images.

b. Texture Coordinate
In texture mapping, each vertex should be assigned with a unique coordinate which is set in

modeling stage. The assigned coordinate and vertex datkaated in a similar way. Related

functions are explained in Chapter 7.

Below is an example of simple texture mapping. Basically, an image is attached to a rectangle.
Figure 19 shows how each vertex is given its coordinate. Rendering results vary witlordieate

setting.

3 2
O:V(-IL-D T,)
1:¥(1,-) T(1,
2:WIL D T,
I:v-L 1 T,
1] 1
——

Figure 19. Texture mapping on a rectangle

42

RayCore® Programming Guide Version 1.0

5.2 Texture Filtering

When a ray hits certain point on a triangle, a texture pixel is mapped. This process is named texture
mapping.The basic unit of texture pixel is called texdDepending on the depth or distance of a
triangle, multiple texels may be used. Also, a single texel may be applied to multiple pixels on screen.
In this case, aliasing effects may occur, which result inatural rendering outcomes. Texture

filtering alleviates the problem caused by aliasing effects.

pixels on screen

—_-‘

L P ——4 P
3D polygon

Figure 20. Each pixel with multiple texels

Applying texture filtering provides smooth rendered images. Figure 21 shows the comparison
between two images whetexture filtering is used for the image on left had side but not for the other.
With texture filtering applied, mapping results look smoother and more natural. Among various
filtering techniques, texture mipmapping is widely adopted. RayCafel also sipports texture
mipmapping. Although the current version of RayCoreP| supports only bilinear texture

mipmapping, additional types of texture mipmapping will be supported in later versions.

" Texel _ Texture pixel

43

RayCore® Programming Guide Version 1.0

Figure 21. Filtering applied (RHS) vs Filtering not applied (LHS)

a. Mipmap Texture

The size of triangles with textures overlaid may be changed every time. Hence, the results of texture
mapping may look unrealistic, mainly because the connectivity between each pixel weakens when a
small texture is imposed on a larggeatt. Using mipmap textures resolves this problem during the

filtering process.

Texture mipmapping is a technique that uses thesjore data of images after reducing the size of an
image by 1/4 the original size and ranking the reduced images basesir@iztn Reducing the size

of images every time and using a great number of texels to alleviate the connectivity lead to the
decrease in rendering speed and hence inefficiency of rendering performance. In order to increase the
efficiency, upper ranking iages are saved. It is true that mipmapping takes a considerable amount of
time; however, mipmapping process is performed prior to rendering process and therefore does not

affect rendering time.

level = 2

-i

Figure 22. Texture mipmap

44

RayCore® Programming Guide Version 1.0

Texture filtering is also performed prior to rendert
to the accuracy of images, texture filtering improves rendering efficiency. No exac eatuesed in

terms of image quality; however, there is no disagreement that this method provides qualified
performanceTherefore, using texture filtering is not optional but necessary.

5.3 Texture Objects

Textures are processed on-pbject basis. When taxte objects are created, the name of each object
is loaded. Mapping is performed by binding a texture to this name in the list of indices.

void rcGenTextures(RCsizein, RCint *texture$;

n number of texture objects are created. When the objects are created, the name of each
received intextures The received name can be reused continuously unless deleted.

names are generated sequentially form 1 but not continuously. The sp&xtures where
object names are stored should be allocated prior to saving the names.

The name of a texture object is a virtually specified value that maintains texture objects used in the
internal library of RayCof®API and higher levels of application prograneBindTexture() lets the
name of texture specify which texture object is loaded or used.

void rcBindTexture (RCenuntarget RCinttexture);

Because RayCofeAPI supports only 2D texturefarget must be RC_TEXTURE_2Dexture
specifies the name of a texture object. In order to use a texture object, its name must be

rcTexlmage2D()is the function that stores texture data. Calling this function loads the texture data to
RayCor&. The mipmaptexture is automatically generated. The memory access pattern-is pre
determined because RayCbdtses a bilinear filter internally. In other words, texels indicated by the
texture coordinate (u, v) are selected by picking four adjacent texels.

Using textues requires high memory usage due to its high locality. Therefore, a cache memory is
implemented in the texture mapping unit to reduce the memory bandwidth. If the texture data is
rearranged according to the method of processing texture filtering, hightmrpance can be
realized. This rearrangement of the texture data is gnmeessing step to enhance the processing
performance. This process is managed by basic functions without having to specify a function to load
the data.

45

RayCore® Programming Guide Version 1.0

void rcTexImage2D (RCenuntarget, RCintlevel RCintinternalformat RCsizeiwidth,
RCsizeiheight RCintborder, RCenunmformat, RCenuntype const
RCvoid *pixels;

Above function loads texture images. Because only 2D textures are suppangetimust be
RC_TEXTURE_2D. The functionality that automatically generates texture mipmap is add
rcTexlmage2D Therefore, only O receives a rank, followed by higher numbers automat
assigned with the corresponding mipmap. The function used in OpenGL assigns a rank
mipmap. rcTexlmage2Dalso determines the width and height of a texture. The size of a t4
should be expressed as powers of 2. The minimum value of the size is 16, and the m|
value of the size is 1024. If the requirements of this range are not satesfieztror occur
without loading a texture. The type of texture data supports RGB or RGBA. An internal {
always consists of the four elements of RGBA. Thereftoanat supports RC_RGBA an
RC_RGB which both specify the elements of input daternalformatmust be equal ttormat

type specifies the data type of each element. Supported data typeRGrBYTE,

RC_UNSIGNED_BYTE, RC_SHORT and RC_UNSIGNED_SHORT. Data address i
transferred throughixels.

A texture mapping unit in RayCdteonsists of the 4 elements of RGBTextureAlphaspecifies

an alpha value added to the data with adefned RGB value. If the alpha value is not defined
separately by a programmer, it i's set amt the def a
property)

void rcTextureAlpha (unsigned chavalue);

If a texture is composed of three elements, the alpha value of a texture is added automat
value If a texture is composed of four elements, the alpha value of tliealriexture is used 4
it is.

5.4 Programming

In order to use textures, all texture data should be loaded in the initialization stage and is called back
when needed. Below steps guarantee the proper usage of textures.

[Step 1: Initial setting]
1. Generate a texture object. Idéntihe name of the texture object.
2. Activate the texture object to be loaded in its name.

3. Load the texture.

[Step 2: Specify if textures will be used whettisg the material properties]
1. Activate the texture object to be used in its name.
2. Specify the activation status of the texture.

Texture is considered as a material property and hence must be set in the stage of material property

46

RayCore® Programming Guide Version 1.0

setting. It can be changed in rendering stage; however, we may expect desirable results if texture is
used tgether with material properties. Therefore, it is recommended that the settings for texture and
material properties are made in the initial stage and that the settings remain ¢hewsarg the

rendering process.

5.5 Sample Codes
a. Texture Loading

Theexplanation of how to load textures is shown below.

1. Create a texture object.
2. Specify by name the texture object
3. Load the texture data

rcGenTextures(1, &m_texture[index].bindName);
rcBindTexture(RC_TEXTURE_2D, m_texture[index].bindName);

if(m_texture[index].plmagetype == 3){

rcTextureAlpha(0x10);
rcTeximage2D(RC_TEXTURE_2D, 0, RC_RGB,
m_texture[index].plmagesizeX,
m_texture[index].plmagesizeY,
0, RC_RGB, RC_UNSIGNED_BYTE,
m_texture[index].plmagedata);

}
else if(m_texture[index].plmagetype == 4) {

rcTeximage2D(RC_TEXTURE_2D, 0, RC_RGBA,
m_texture[index].plmagesizeX,
m_texture[index].plmagesizeY,
0, RC_RGBA, RC_UNSIGNED_BYTE,
m_texture[index].plmagedata);

Internally, textures use the same form of RGBA. If a texture is set in the form of RGB, an alpha
value can be assigned by callim¥extureAlpha If the original texture data is in the form of RGBA,

it may be used as it is.

b. Specifying the use of textures

The use of textures should be determined in the setting for material properties. Material properties

setting will be covered in the next chapter.

47

RayCore® Programming Guide Version 1.0

rcGenMaterials(1, &sceneData.m_material[i].bindName);
rcBindMaterial(sceneData.m_material[i].bindName);

rcMaterialfv(RC_FRONT_AND_BACK, RC_AMBIENT, &sceneData.m_material[i].ambient.r);
rcMaterialfv(RC_FRONT_AND_BACK, RC_DIFFUSE, &sceneData.m_material[i].diffuse.r);
rcMaterialfv(RC_FRONT_AND_BACK, RC_SPECULAR;sceneData.m_material[i].speculdr.r
rcMaterialf(RC_FRONT_AND_BACK, RC_SHININESS, sceneData.m_material[i].exponent);
rcMaterialfv(RC_FRONT_AND_BACK, RC_REFLECTION,sceneData.m_material[i].reflection.r);
rcMaterialfv(RC_FRONT_AND_BACK, RC_TRANSMITTANCE.sceneData.m_material[i].refraoti.r);
rcMaterialf(RC_FRONT_AND_BACK, RC_REFRACTION_INDEX¢ceneData.m_material[i].refractionindex);
rcEnable(RC_TEXTURE_2D);

rcBindTexture(RC_TEXTURE_2D, sceneData.m_texture[0].bindName);

After textures are actived at the configuration stage of material properties, loaded texture objects

are specified by their name.

48

RayCore® Programming Guide Version 1.0

Chapter 6 Material

The material property is a data which is used in rendering and which is a characteristic value that is
assigned to a specific object. Thialwe consists of three elements of RGB (red, green and blue).
This chapter explains the meaning of each element and its configuration.

6.1 Material Property

Material property of an object can be categorized into (i) a property that is used to determine the
color, and (ii) a property that is used to generate the secondary ray. Along with the material property,
texture which represents the feel can be specified and be used together with color elements. In order
to use the texture, it is applied to the col@meénts. Reflection, refraction, transmission are the set of
elements which determines how to generate the secondary ray. Also, the property that is needed in
the secondary ray can be split into three elements and these three elements can be intetipeeted as
values that will determine the degree of reflection and transmission of RGB.

6.2 Color Property

Color property is an element which is used to perform the light calculation in the process of

rendering. This property is classified into and used as thresitygrabient, diffuse, and specular.

a. Ambient

Ambient is defined as the light that exists in the surroundings. This property has no specific direction
as it illuminates uniformly. The rays generated from the light source gradually fade away and lose

direction after they undergo a countless processes of reflection and refraction.

During the daytime, it is possible to see the interior objects clearly even without the light coming into

49

RayCore® Programming Guide Version 1.0

the house because of the light derived from sunlight is scatteraddaby refraction and reflection.
On the other hand, it is hard to sense the surroundings during the nighttime due to the dissolution of
ambient light. This kind of property that is expressed in terms of color property is called ambient.

b. Diffuse

Diffuse isthe most common type of light property in 3D graphics. This light property influences the
final color of the object due to the incident angle based on the direction of the light source. The
degree of lightness and darkness is distinguished based omwdtieroof the light source.

Figure 1. Diffuse

c. Specular

Certain part of the object is shown very brightly when the light is intensively illuminated to make
strong reaction on the surface. Such phenomena are expressed using dpeeuiarthis property,

one section of the object is expressed radiantly when the light is situated in a specific location.

The relative brightness in the specific part of the object is made possible due to relatively bright
value is acquired from the valwé the normal vector of that specific location. Also, it is possible to
express highlighted part based on the location of light source.

50

RayCore® Programming Guide Version 1.0

Figure 2. Specular

6.3 Light Property

The properties of light are used to generate the secondgryihe following essential particular
needs special attention when setting the property of the light source.

A The sum of a reflectance and a transmittance should not exceed 1.

As discussed in Chapter 2, if the sum of a reflectance and a transmittancesekceaintended,
unexpected result may occur.

a. Reflection

If the property of reflection is specified to the object, the surrounding objects are reflected on the
surface of this object.

Figure 3. Reflection

51

RayCore® Programming Guide Version 1.0

b. Transmission

Transmittanceis the rate at which the rays penetrate objects. Through this value, the degree of
transmitted rays can be specified. Transmittance property sets up the value in form of RGB.

Figure 4. Transmission

c. Refraction

Refractive index is gingle value to express the extent to which the rays are refracted on the surface.
The direction of a transmitted light is altered based on the refractive index. As shown in Figure 29, it
is evident that the expression of overall shadow and kettle slaapseln compared to that of Figure

28.

Figure 5. Refraction

52

RayCore® Programming Guide Version 1.0

6.4 Programming

The

specify a material that will not be used. Therefore, a userliss owed t o configure

number of mat eri al objects can be wup to

numbers.

OpenGL does not have such limitation regarding the number of material objects; however, it is

cumbersome to set up the property value each time. On the other hand, Ray®ooaly requires

onetime setupon the material property, allowing users to easily specify the material property of
other objects by binding the material object without additional efforts to set up the material property.

The only step that is required is the assignment of objects ty gl particular material property.

This makes the users to reuse the duplicated material property, thereby simplifying the programming.

The material can be specified using the following functions.

void rcGenMaterials (RCsizein, RCuint ‘materialg;

Generates the material objects. Assigns the number of objects that needs to be creatd
When the object is created, the name of the object is receivedhiadarials. The name start
from the minimum value of 6 1 rdy. used forethe matérig
property initialization purpose.

void rcBindMaterial (RCuintmaterial9;

Assigns the material object that is to be created. This assigned material object b
activated. In order to set the material object, it needs tactieated. The activated mater
object signifies that this will be used in setting material property or in the object which i
rendered.

void rcMaterialf (RCenumface RCenunpname RCfloatparam);
void rcMaterialfv (RCenumface RCenunpname const RCfloat paramg;

Is a function which is used to set the material property basecDiraw function. face only
supportsRC_FRONT_AND_BACK. It is possible to set up the material property ugpingme
In order to assign three color properti®_AMBI ENT, RC_DIFFUSE, RC_SPECULAR,
RC_REFLECTION, RC_TRANSMITTANCE , RC_AMBIENT_AND_DIFFUSE are used
The input data is inserted in a vector format foarams RC_SHINIESS,
RC_REFRACTION_INDEX are used in inserting a single value. The input value is ass
in param

A RC_AMBIENT inputs information of three types of color for ambient.

A RC_DIFFUSE inputs information of three types of color for diffuse.

A RC_SPECULAR inputs information of three types of color for specular.

A RC_REFLECTION inputs the information of three colors for reflectance.

A RC_TRANSMITTANCE inputs the information of three colors for transmittance.

A RC_AMBIENT_AND_DIFFUSE simultaneously inputs the color information for ambient

and diffuse.
A RC_SHININESS setthe exponent value of specular.
A RC_REFRACTION_INDEX sets the refractive index.

53

65126
freel

RayCore® Programming Guide Version 1.0

a. Program Model

The material can be specified and be used in the following way:

[Initial setting]

1. Call the name of the material object that is generated.

2. Activate the matéal object that is to be loaded using its name.
3. Set material properties.

[Rendering]
1. Activate the material object using its name.
2. Load the object which is to be rendered.

b. Notes

The following items must be taken care of when setting and usingdtexial property:

A Remember that the material data is global data
A Remember that the texture is part of the material property configuration

The material object is global data that is used in the overall rendering process. If frequently used as
in the caseof OpenGL, other rendering object which uses an equivalent material object is rendered
by utilizing reconfigured material property. This is made possible by reusing the single material. In
order to use the material data while changing its value, the ialatdrject should be assigned
independently so that the material object is not reused in other object that is to be rendered.

The texture can be activated in the material data configuration. Trying not to set the texture in the
rendering process causessiemnfusion while programming. It is possible to simplify programming
through simple configuration of the material object with or without texture usage.

6.5 Code Example

a. Setting the material properties for Phong shading

Assign the basic material properties.elthe material properties which are used in OpenGL. Based

on the assigned value, the result will alter accordingly.

#include "RCFramework.h"
/I Programming Guide Phong Shading
#include "sphere.h"

class Tutorial : public RCFramework

54

{
public:

RayCore® Programming Guide Version 1.0

Tutorial(void) : RCFramework("Programming Guid®hong Shading", 800, 480){}
virtual ~Tutorial(void){}

RCuint
RCuint

protected:

m_staticMaterial;
m_bindNamel[4];

virtual BOOL Onlntialize(void){

rcSceneAlllnit();

{

rcDepthBounce(14);

rcClearColor(0.5f, 0.5f, 0.5f, 1.0f);
rcViewport(0, 0, Width(), Height());

rcMatrixMode(RC_PROJECTION);
rcLoadldentity();

rcuPerspective(30, (float)Width() /(float)Height{), 10000);
rcuLookAt(0, 0, 8, 0,0, 0,0, 1, 0);
/*
* Light Setting
*/

rcEnable(RC_LIGHTING);

{

rcEnable(RC_LIGHTO);

{
float pos[4] = {5, 5,8, 1};
rcLightfv(RC_LIGHTO, RC_POSITION, pos);

}

{
float ambient[4] 0, 0, 0, 0};
rcLightfv(RC_LIGHTO, RC_AMBIENT, ambient);

}

{
float diffuse[4] = {0.2f, 0.3f, 0.4f, 0},
rcLightfv(RC_LIGHTO, RC_DIFFUSE, diffuse);

}

{
float specular[4] ={1, 1, 1, O};
rcLightfv(RC_LIGHTO, RC_SPECUAR, specular);

}

}
/*

* Material Setting

55

RayCore® Programming Guide Version 1.0

*

rcGenMaterials(1, &m_bindNamel[0]);

rcBindMaterial(m_bindName[0]);

{
float ambient[4] = {0, 0, 0, 0};
rcMaterialfv(RC_FRONT_AND_BACK, RC_AMBIENTambient);
}
{
float diffuse[4] = {0, 1, 1, 0};
rcMaterialfv(RC_FRONT_AND_BACK, RC_DIFFUSE, diffuse);
}
{
float specular[4] = {1, 0, O, O};
rcMaterialfv(RC_FRONT_AND_BACK, RC_SFCULAR, specular);
}
{
float exponent = 10;
rcMaterialf (RC_FRONT_AND_BACK, RC_SHININESS, exponent);
}

rcDisable(RC_TEXTURE_2D);

rcGenMaterials(1, &m_bindName[1]);

rcBindMaterial(m_bindName[1]);

{
float ambient[4] = {0, 0, 0, 0};
rcMaterialfv(RC_FRONT_AND_BACK, RC_AMBIENT, ambient);
}
{
float diffuse[4] = {1, O, 1, 0};
rcMaterialfv(RC_FRONT_AND_BACK, RC_DIFFUSE, diffuse);
}
{
float specular[4] = {0, 1, 0, 0};
rcMaterialfv(RC_FRONT_AND_BACK, RC_SPECULAR, specular);
}
{
float exponent = 20;
rcMaterialf(RC_FRONT_AND_BACK, RC_SHININESS, exponent);
}

rcDisable(RC_TEXTURE_2D);

rcGenMaterials(1, &m_bindNamel[2]);

rcBindMaerial(m_bindName[2]);

56

RayCore® Programming Guide Version 1.0

float ambient[4] = {0, 0, 0, 0};
rcMaterialfv(RC_FRONT_AND_BACK, RC_AMBIENT, ambient);

}
{
float diffuse[4] = {1, 1, O, 0};
rcMaterialfv(RC_FRONT_AND_BACK, RC_DIFFUSE, diffuse);
}
{
float specular[4] = {0, 0, 1, 0};
rcMaterialfv(RC_FRONT_AND_BACK, RC_SPECULAR, specular);
}
{
float exponent = 30;
rcMaterialf(RC_FRONT_AND_BACK, RC_SHININESS, exponent);
}

rcDisable(RC_TEXTURE_2D);

rcGenMateials(1, &m_bindName[3]);

rcBindMaterial(m_bindName[3]);

{
float ambient[4] = {0, 0, O, 0};
rcMaterialfv(RC_FRONT_AND_BACK, RC_AMBIENT, ambient);
}
{
float diffuse[4] = {0, 1, 1, 0};
rcMaterialfv(RC_FRONT_AND_BACKRC_DIFFUSE, diffuse);
}
{
float specular[4] = {0, 0, 0, 0};
rcMaterialfv(RC_FRONT_AND_BACK, RC_SPECULAR, specular);
}
{
float exponent = 20;
rcMaterialf(RC_FRONT_AND_BACK, RC_SHININESS, exponent);
}

rcDisable(RC TEXTURE_2D);

/*
* Static Scene

*

*

float galaxyV[12] = {
-1,0,-1,
1,0,-1,
1,0,1,
-1,0,1

57

RayCore® Programming Guide Version 1.0

float galaxyT[8] = {
0,0,
1,0,
1,1,
0,1
3

float diffuse[3] = {0.6f, 0.8f, 0.5f};

rcGenMaterials(1, &m_staticMaterial);
rcBindMaterial(m_staticMaterial);

{
float ambient[4] = {0, 0, O, 0};
rcMaterialfv(RC_FRONT_AND_BACK, RC_AMBIENT, ambient);
}
{
float diffuse[4] = {1, 1, 0, 0};
rcMaterialfv(RC_FRONT_AND_BACK, RC_DIFFUSE, diffuse);
}
{
float specular[4] ={0, 0, 0, 0},
rcMaterialfv(RC_FRONT_AND_BACK, RC_SPECULAR, specular);
}
{
float exponent = 10;
rcMaterialf(RC_FRONT_AND_BACK, RC_SHININESS, exponent);
}

rcDisable(RC_TEXTURE_2D);
rcStaticSceneBegin();

rcEnableClientState(RC_VERTEX_ARRAY);
rcEnableClientState(RC_TEXTURE_COORD_ARRAY);

rcVertexPointer(3, RC_FLOAT, 0, galaxyV);
rcTexCoordPointer(2, RC_FLOAT, 0, galaxyT);

rcMatrixMode(RC_MODELVIEW);
rcLoadldentity();
rcTranslatef(0.0;1, -10);
rcScalef(8, 1, 10);
rcDrawArrays(RC_QUADS, 0, 4);

rcDisableClientState(RC_VERTEX_ARRAY);
rcDisableClientState(RC_TEXTURE_COORD_ARRAY);

rcStaticSceneEnd();
}

return TRUE;

virtual BOOL OnDraw(void){
static inti = 0;

58

RayCore® Programming Guide Version 1.0

i++; // 3 times loop with each color.
if(IsTestMode() && i>3) return FALSE;

{
rcClear(RC_COLOR_BUFFER_BIT | RC_DEPTH_BUFFER_BIT);
rcMatixMode(RC_MODELVIEW);
rcLoadldentity();
rcTranslatef(0.0, 0,7.0);
rcEnableClientState(RC_VERTEX_ARRAY);
rcEnableClientState(RC_NORMAL_ARRAY);
rcVertexPointer(3, RC_FLOAT, sizeof(struct Pos), g_SphereVertices);
rcNormalPointer(RC_FLOATD, g_SphereNormals);
rcPushMatrix();
rcBindMaterial(m_bindName[0]);
rcTranslatef(2, 0, 0);
rcDrawArrays(RC_TRIANGLES, 0, sizeof(g_SphereVertices)/sizeof(Pos));
rcPopMatrix();
rcPushMatrix();
rcBindMaterial(m_bindName[1]);
rcTranslatef(2, 0, 0);
rcDrawArrays(RC_TRIANGLES, 0, sizeof(g_SphereVertices)/sizeof(Pos));
rcPopMatrix();
rcBindMaterial(m_bindName[2]);
rcDrawArrays(RC_TRIANGLES, 0, sizeof(g_SphereVertices)/sizeof(Pos));
rcDisableClientState(RC_VERTEXARRAY);
rcDisableClientState(RC_NORMAL_ARRAY);

}

return TRUE;

}
h

Tutorial g_Tutorial,

The material properties are set differently on each object and based on these results, different color
results can be earned as follows.

59

RayCore® Programming Guide Version 1.0

Figure 6. Colored balls by changing the material properties

b. Reflection

Following is an example of a mirrdike reflection. Among two different rectangles, the large one is

a frame, and the small one is a mirror. Thus, by setting the reflgoidgerty of the material on the

small rectangle, the results of reflection on the triangle which is located in front of the small

rectangle can be achieved.

#include "RCFramework.h"
/I Programming GuideReflection

typedef struct RGBImageRec {
int sizeX, sizeY;
unsigned char *data;

} RGBImageRec;

typedef struct bmpBITMAPFILEHEADER{
WORD DbfType;
DWORD bfSize;
WORD bfReservedl;
WORD DbfReserved?2;
DWORD bfOffBits;
} BITMAPFILEHEADER];

typedef struct bmpBITMAPINFOHEADER{
DWORD bhiSize;
DWORD biWidth;
DWORD biHeight;
WORD biPlanes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizelmage;
DWORD biXPelsPerMeter;
DWORD biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrimportant;

} BITMAPFILEHEADER?Z2;

RGBImageRec *DIBImageLoad(char* path, oftannel) {

60

RGBImageRec* plmage=NULL,;
FILE *f=NULL,;

unsigned char *pBuf=NULL;

int dataSize=0;

int index=0;

DWORD x=0;

DWORD y=0;

int bpp=0;

if(channel '=3 && channel =4) return plmage;

f = fopen(path, "rb");

if(f 1= NULL) {
BITMAPFILEHEADER1HD1;
BITMAPFILEHEADER2 HD2;

fseek(f,0, SEEK_SET);
fread(&HD1.bfType, sizeof(WORD), 1, f);
fread(&HD1.bfSize sizeof(WORD, 1, f);
fseek(f, 10, SEEK_SET);
fread(&HD1.bfOffBits, sizeof(int),1f);

fread(&HD2.biSize, sizeof(int), 1, f);
fread(&HD2.biWidth, sizeof(int), 1, f);
fread(&HD2.biHeight, sizeof(int), 1, f);
fread(&HD2.biPlanes, sizeof(WORD), 1, f);
fread(&HD2.biBitCount, sizeof(WORD), 1, f);
fread(&HD2.biCompression, sizeof(int), 1, f);

fseek(f,HD1.bfOffBits, SEEK_SET);

bpp = HD2.biBitCount/8;
if(bpp == 1 || bpp == channel)
{

pBuf = (unsigned char*) malloc(channel);

plmage = (RGBImageRec*) malloc(sizeof(RGBImageRec));
plmage>sizeX = HD2.biWidth;
plmage>sizeY = HD2.biHeight;

dataSize = HD2.biWidit*HD2.biHeight*channel;
plmage>data = (unsigned char*) malloc(dataSize);

for(y=0; y<HD2.biHeight; y++) {
for(x=0; x<HD2.biWidth; x++) {
fread(pBuf, bpp, 1, f);
if(bpp == 1) {
pBuf[1] = pBuf[2] = pBuf[0];
if(channel ==4) pBuUf[3] =0;
}

index = (y*HD2.biWidth + x)*channel;
plmage>datafindex] = pBuf{2];
plmage>data[index + L = pBuf[1];
plmage>data[index + P = pBuf[0];
if(channel == 4)

plmage>datafindex + 3] = pBuf[3];

RayCore® Programming Guide Version 1.0

61

RayCore® Programming Guide Version 1.0

}

if(pBuf) free(pBuf);
pBuf = NULL;
}

fclose(f);

return plmage;

}

RCfloat m_Angle=0.0f;
RGBImageRec *g_texture;
RCuint *g_textureName;

#define MATERIAL_FRAME 0
#define MATERIAL_MIRROR
#define MATERIAL_TRIANGLE 2
unsigned ing_MaterialArray[3];

[EEY

class Tutorial : public RCFramework

{

public:
Tutorial(void) : RCFramework("Programming GuidReflection", 800, 480){}
virtual ~Tutorial(void){}

void GenTexture(void){
g_texture = (RGBImageRec *)DIBImageLoad("./scenedata/Gidéection/triangle.bmp”, 3);

if(g_texture){
g_textureName = new RCuint[1];

rcGenTextures(1, g_textureName);

rcBindTexture(RC_TEXTURE_2D, g_textureName[0]);

rcTextureAlpha(128);

rcTeximage2D(RC_TEXTURE_2D, 0, RC_RGB,
g_texture[O]sizeX, g_texture[0].sizeY, O,
RC_RGB, RC_UNSIGNED_BYTE,
g_texture[0].data);

if(g_texture>data) free(g_texture>data);
free(g_texture);

}

void GenMaterial(void){
RCfloat Reflectance[] = {1.01.0,1.0};
RCfloatNotReflectance[] = {00, 0};
RCfloat color[3][4]={
{0.2f, 0.4f, 0.8f, 0.0f},
{0.0f, 0.8f, 0.4f, 0.0f},
{0.0f, 1.0f, 0.0f, 0.0f},
I3

rcGenMaterials(3, g_MaterialArray);

rcBindMaterial(g_MaterialArray[MATERIAL_FRAME]);

62

RayCore® Programming Guide Version 1.0

rcDisable(RC_TEXURE_2D);
rcMaterialfv(RC_FRONT_AND_BACK, RC_AMBIENT_AND_DIFFUSE, &colorfMATERIAL_FRAME][0]);
rcMaterialfv(RC_FRONT_AND_BACK, RC_REFLECTION, NotReflectance);

rcBindMaterial(g_MaterialArray[MATERIAL_MIRRORY));

rcDisable(RC_TEXTURE_2D);

rcMateriali{RC_FRONT_AND_BACK, RC_AMBIENT_AND_DIFFUSE, &color[MATERIAL_MIRROR][O]);
rcMaterialfv(RC_FRONT_AND_BACK, RC_REFLECTION, Reflectance);

rcBindMaterial(g_MaterialArray[MATERIAL_TRIANGLE]));

rcDisable(RC_TEXTURE_2D);

rcMaterialfv(RC_FRONT_AND_BACK,
RC_AMBIENT_AND_DIFFUSE,
&color[MATERIAL_TRIANGLE][0]);

RCfloat ambient[] = {0.8,0.8,0.8,0};

RCfloat diffuse[] = {0.2,0.2,0,0};
rcMaterialfiv(RC_FRONT_AND_BACK, RC_AMBIENT, ambient);
rcMaterialfv(RC_FRONT_AND_BACK, RC_DIFFUSE, diffuse);

rcMaterialfiv(RC_FRONT_AND_BACK, RC_REFLECTION, NotReflectance);

void RenderMirror(void){
RCfloat QuadVertices[4][3];

QuadVertices[0][0]=2.0f;
QuadVertices[0][1]=2.0f;
QuadVertices[0][2]=0.0f;

QuadVertices[1][0]=2.0f;
QuadVertices[1][1}2.0f;
QuadVertices[1][2]=0.0f;

QuadVertices[2][0]=2.0f;
QuadVertices[2][1]=2.0f;
QuadVertices[2][2]=0.0f;

QuadVertices[3][0]=2.0f;
QuadVertices[3][1]=2.0f;
QuadVertices[3][2]=0.0f;

rcDisable(RC_TEXTURE_2D);
rcEnableClientState(RC_VERTEX_ARRAY);

rcMatrixMode(RC_MODELVIEW);
rcLoadldentity();

rcVertexPointer(3, RC_FLOAT, 0, QuadVertices);

rcPushMatrix();

rcTranslatef(00, -10);

rcScalef(22, 2);
rcBindMaterial(g_MaterialArray[MATERIAL_FRAME};
rcDrawArrays(RC_QUADS,0,4);

rcPopMatrix();

63

RayCore® Programming Guide Version 1.0

[Imirror

rcPushMatrix();

rcTranslatef(00, -9.999f);

rcScalef(1.7f, 1.7f, 1.7f);
rcBindMaterial(g_MaterialArray[MATERIAL_MIRRORY));
rcDrawArrays(RC_QUADSO, 4);

rcPopMatrix();

rcDisableClientState(RC_VERTEX_ARRAY);

void RenderTriangle(void){
RCfloat TriangleVertices[3][3];

TriangleVertices[0][OF 0.0f;
TriangleVertices[0][1} 0.707f;
TriangleVertices[0][2} 0.0f;

TriangleVertices[1][0F -1.0f;
TriandeVertices[1][1]=-0.707f;
TriangleVertices[1][2} 0.0f;

TriangleVertices[2][OF 1.0f;
TriangleVertices[2][1} -0.707f;
TriangleVertices[2][2} 0.0f;

rcEnableClientState(RC_VERTEX_ARRAY);
rcVertexPointer(3, RC_FLOAT, 0, TriangleKiees);
rcEnableClientState(RC_TEXTURE_COORD_ARRAY);

float TexIndex[3][2];

TexIndex|[0][0] = 0.5f; TexIndex[0][1] = O.;
TexIndex[1][0] = 0.f, TexIndex[1][1] = 1.f;
Texindex[2][0] = 1.f, TexIndex[2][1] = 1.f;

rcTexCoordPointer(RC_FLOAT,0, TexIndex);

rcBindMaterial(g_MaterialArray[MATERIAL_TRIANGLE]);
rcEnable(RC_TEXTURE_2D);
rcBindTexture(RC_TEXTURE_2D, g_textureName[0]);

rcMatrixMode(RC_MODELVIEW);
rcLoadldentity();

rcPushMatrix();

rcTranslatef(00, -5);
rcRotaté(m_Angle,0, 1, 0);
rcDrawArrays(RC_TRIANGLESD, 3);
rcPopMatrix();

rcDisableClientState(RC_TEXTURE_COORD_ARRAY);
rcBindMaterial(0);

rcBindTexture(RC_TEXTURE_2D, 0);
rcDisable(RC_TEXTURE_2D);

rcDisableClientState(RC_VERTEX_ARRAY);

64

RayCore® Programming Guide Version 1.0

}

void StaticSceneDraw(void){
rcStaticSceneBegin();
RenderMirror();

rcStaticSceneEnd();
}
void DynamicSceneDraw(void){
RenderTriangle();
}
protected:
virtual BOOL Onlintialize(void){
GenTexture();
GenMaterial();
rcSceneAlllnit();
{
rcClearColor(0.2f, 0.2f, 0.2f, 1.0f);
rcViewport(0, 0, Width(), Height());
rcMatrixMode(RC_PROJECTION);
rcLoadldentity();
rcuPerspective(60.0f, (RCfloat)Width() / (RCfloat)Heighi()0f, 500.0f);
rcuLookAt(-3,0,0,0,0,-8,0, 1,0);
StaticSceneDraw();
}
return TRUE;
}

virtual BOOL OnDraw(void){
static inti = 0;
i++; // 3 times loop with each color.
if(IsTestMode() && i>3) return FALSE;
DynamicSceneDraw();

m_Angle += 10.f;

return TRUE;

}
h

Tutorial g_Tutoral;

As the triangle rotates, the reflected image is seen on the rectangular mirror.

65

RayCore® Programming Guide Version 1.0

Figure 7. Reflection

c. Transmission and Refraction

Assign the transmittance and refractive index of the material to the rectangle which is ilodatat
of a triangle. Through the triangle, it is possible to achieve transmitted and refracted results.

#include "RCFramework.h"
/I Programming GuideRefraction

typedef struct RGBImageRec {
int sizeX, sizeY;
unsigned char *data;

} RGBImageRec;

typedef struct bmpBITMAPFILEHEADER{
WORD DbfType;
DWORD bfSize;
WORD bfReservedl;
WORD bfReserved2;
DWORD bfOffBits;
} BITMAPFILEHEADER];

typedef struct bmpBITMAPINFOHEADER{
DWORD biSize;
DWORD biWidth;
DWORD biHeight;
WORD DbiPlanes;
WORD biBitCourt;
DWORD biCompression;
DWORD biSizelmage;
DWORD biXPelsPerMeter;
DWORD biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrimportant;

} BITMAPFILEHEADER?Z2;

RGBImageRec *DIBImageLoad(char* path, int channel) {
RGBImageRec* plmage=NULL,
FILE *f=NULL;
unsigned char *pBuf=NULL,;
int dataSize=0;

66

int index=0;
DWORD x=0;
DWORD y=0;
int bpp=0;

if(channel =3 && channel =4) return plmage;

f = fopen(path, "rb");

if(f 1= NULL) {
BITMAPFILEHEADER1 HD1,;
BITMAPFILEHEADER2 HD2;

fseek(f,0, SEEK_SET;
fread(&HD1.bfType, sizeof(WORD), 1, f);
fread(&HD1.bfSize sizeof(WORD), 1, f);
fseek(f, 10, SEEK_SET);
fread(&HD1.bfOffBits, sizeof(int),1f);

fread(&HD2.biSize, sizeof(int), 1, f);
fread(&HD2.biWidth, sizeof(int), 1, f);
fread(&HD2.biHeight, sizeof(int), 1, f);
fread(&HD2.biPlanes, sizeof(WORD), 1, f);
fread(&HD2.biBitCount, sizeof(WORD), 1, f);
fread(&HD2.biCompression, sizeof(int), 1, f);

fseek(f,HD1.bfOffBits SEEK_SET);

bpp = HD2.biBitCount/8;
if(bpp == 1 || bpp== channel)
{

pBuf = (unsigned char*) malloc(channel);

plmage = (RGBImageRec*) malloc(sizeof(RGBImageRec));
plmage>sizeX = HD2.biWidth;
plmage>sizeY = HD2.biHeight;

dataSize = HD2.biWidth*HD2.biHeight*channel;
plmage>data = (unsiged char*) malloc(dataSize);

for(y=0; y<HD2.biHeight; y++) {
for(x=0; x<HD2.biWidth; x++) {
fread(pBuf, bpp, 1, f);
if(bpp == 1) {
pBuf[1] = pBuf[2] = pBuf[0];
ifchannel == 4) pBuf[3] = 0;
}

index = (y*HD2.biWidth+ x)*channel;
plmage>datafindex] = pBuf{2];
plmage>datafindex + 1]= pBuf[1];
plmage>data[index + 2]= pBuf[0];
if(channel == 4)

plmage>data[index + 3] = pBuf[3];

}

if(pBuf) free(pBuf);
pBuf = NULL;

RayCore® Programming Guide Version 1.0

67

RayCore® Programming Guide Version 1.0

fclose(f);

return plmage;

}

float g_refractionindexl1 = 1.0f;
float g_refractionindex2 = 1.0f;

RGBImageRec *g_texture;
RCuint *g_textureName;

#define MATERIAL_TRIANGLE 0
#define MATERIAL_REFRACTION1
#define MATERIAL_REFRACTION2 2
unsigned ing_MaterialArray[3];

[EnY

class Tutorial : public RCFramework

{

public:
Tutorial(void) : RCFramework("Programming GuidRefraction", 800, 480){}
virtual ~Tutorial(void){}

void GenTexture(void){
g_texture = (RGBImageRec *)DIBImageLoad("./scenedata/GiRdé&action/texture0.bmp”, 3);

if(g_texture){
g_textureName = new RCuint[1];

rcGenTextures(1, g_textureName);
rcBindTexture(RC_TEXTURE_2D, g_textureName[0]);
rcTextureAlpha(128);
rcTeximage2D(RC_TEXTURE_2D, 0, RC_RGB,
_texture[OsizeX, g_texture[0].sizeY, O,
RC_RGB, RC_UNSIGNED_BYTE,
g_texture[0].data);

if(g_texture>data) free(g_texture>data);
free(g_texture);

void GenMaterial(void){
float transmittance[3] = {0.5, 0.5, 0.5};
RCfloatcolor[3][4]={
{0.8f, 0.3f, 0.4f, 0.0f},
{0.2f, 0.4f, 0.8f, 0.0f},
{0.4f, 0.8f, 0.2f, 0.0f},
2

rcGenMaterials(3, g_MaterialArray);

rcBindMaterial(g_MaterialArray[MATERIAL_TRIANGLE]));

rcDisable(RC_TEXTURE_2D);

rcMaterialfv(RC_FRONT_ANDBACK,
RC_AMBIENT_AND_DIFFUSE,

68

}

RayCore® Programming Guide Version 1.0

&color[MATERIAL_TRIANGLE][0]);

rcBindMaterial(g_MaterialArray[MATERIAL_REFRACTIONL1]);
rcDisable(RC_TEXTURE_2D);
rcMaterialfv(RC_FRONT_AND_BACK,
RC_AMBIENT_AND_DIFFUSE,
&color[MATERIAL_REFRACTIONL1][0]);
rcMaterialfv(RC_FRONT_AND_BACK, RC_TRANSMITTANCE, transmittance);
rcMaterialf(RC_FRONT_AND_BACK, RC_REFRACTION_INDEX, g_refractionindexl);

rcBindMaterial(g_MaterialArray[MATERIAL_REFRACTION2]);
rcDisable(RC_TEXTURE_2D);
rcMaterialfv(RC_FRONT_AND_BACK,
RC_AMBIENT_AND_DIFFUSE,
&color[MATERIAL_REFRACTIONZ2][0]);
rcMaterialfv(RC_FRONT_AND_BACK, RC_TRANSMITTANCHEransmittance);
rcMaterialf(RC_FRONT_AND_BACK, RC_REFRACTION_INDEX, refractionindex2);

void RenderTriangle(void){

RCfloat TriangleVertices[3][3];

TriangleVertices[0][OF 0.0f;
TriangleVertices[0][1}= 0.707f;
TriangleVertices[0][2} 0.0f;

TriangleVertices[1][0F -1.0f;
TriangleVertices[1][1} -0.707f;
TriangleVertices[1][2}= 0.0f;

TriangleVertices[2][OF 1.0f;
TriangleVertices[2][1} -0.707f;
TriangleVertices[2][2} 0.0f;

rcEnableClientState(RC_VERTEX_ARRAY);
rcVertexPointer(3, RC_FLOAT, 0, TriangleVertices);
rcEnableClientState(RC_TEXTURE_COORD_ARRAY);

float TexIndex[3][2];

TexIndex[0][0] = 0.5f; TexIndex[0][1] = O.;
TexIndex[1][0] = 0.f, TexIndex[1][1] = 1.f;
TexIndex[2][0] = 1.f, TexIndex[2][1] = 1.f;
rcTexCoordPointer(RC_FLOAT,0, TexIndex);

rcMatrixMode(RC_MODELVIEW);
rcLoadldentityy;

rcBindMaterial(g_MaterialArray[MATERIAL_TRIANGLE]);
rcEnable(RC_TEXTURE_2D);
rcBindTexture(RC_TEXTURE_2D, g_textureName[0]);

rcPushMatrix();

rcTranslatef(00, -10);

rcScalef(33, 3);
rcDrawArrays(RC_TRIANGLESD, 3);
rcPopMatrix();

69

RayCore® Programming Guide Version 1.0

rcDisableClientState(RC_TEXTURE_COORD_ARRAY);
rcBindMaterial(0);

rcBindTexture(RC_TEXTURE_2D, 0);
rcDisable(RC_TEXTURE_2D);

rcDisableClientState(RC_VERTEX_ARRAY);
}

void RenderRefraction(void){
RCfloat QuadVertices[4][3];

QuadVertices[0][0F 2.0f;
QuadVertices[0][1F -2.0f;
QuadVertices[0][2 0.0f;

QuadVertices[1][0F 2.0f;
QuadVertices[1][1 2.0f;
QuadVertices[1][2 0.0f;

QuadVertices[2][0F -2.0f;
QuadVertices[2][1}F 2.0f;
QuadVertices[2][2} 0.0f;

QuadVertices[3][0F -2.0f;
QuadVertices[3][1E -2.0f;
QuadVertices[3][2 0.0f;

rcEnableClientState(RC_VERTEX_ARRAY);
rcVertexPointer(3, RC_FLOAT, 0, QuadVertices);

rcMatrixMode(RC_MODELVIEW);
rcLoadldentity();

rcPushMatrix();
rcTranslatef(00, -5);

rcBindMaterial(g_MaterialArray[MATERIAL_REFRACTIONL1]);
rcMaterialf(RC_FRONT_AND_BACK, RC_REFRACTION_INDEX), refractionindex1);
rcDrawArrays(RC_QUADSD, 4);

rcPopMatrix();

rcDisableClientState(RC_VEHRIX_ARRAY);
}

void RefreshRefraction(){
rcBindMaterial(g_MaterialArray[MATERIAL_REFRACTIONL1]);
rcMaterialf(RC_FRONT_AND_BACK, RC_REFRACTION_INDEX), refractionindex1);

}

void StaticSceneDraw(void){
rcStaticSceneBegin();
RenderTriangle();
RerderRefraction();
rcStaticSceneEnd();

70

RayCore® Programming Guide Version 1.0

void DynamicSceneDraw(void){
RefreshRefraction();

}

protected:
virtual BOOL Onlintialize(void){
GenTexture();
GenMaterial();

rcSceneAlllnit();

{
rcClearColor(0.4f, 0.3f, 0.2f, 0.0f);

rcViewport(0, 0, Width(), Height());

rcMatrixMode(RC_PROJECTION);
rcLoadldentity();

rcuPerspective(70.0f, (RCfloat)Width() / (RCfloat)Heighi()0f, 500.0f);
rcuLookAt(-3,0,0,0,0,-8,0, 1,0);

StaticSceneDraw();

}
return TRUE;

}

virtual BOOL OnDraw(void){
static inti = 0;
i++; // 3 times loop with each color.
if(IsTestMode() && i>3) return FALSE;

DynamicSceneDraw();

g_refractionindex1 += 0.1f;
g_refractionIndex2= 0.1f;

return TRUE;
}
b

Tutorial g_Tutorial,

As the refractive index changes, the transmitted and refracted results can be shown accordingly.

71

RayCore® Programming Guide Version 1.0

Figure 8. Transmission and refraction

72

RayCore® Programming Guide Version 1.0

Chapter 7 Drawing

This chapter explains how an objecsent to the renderer and expressed as an image. An object is a
set of virtual triangles with their own material properties. This set of triangles can be expressed in
various forms of shapes, which exist in a three dimensional space where the transfoofation
coordinates is performed.

The essential reason for drawing an object is to calculate the final color of a pixel by understanding

the optical correlation properties. This arithmetic process is called shading. The most popular

algorithm in reatime rendering is Phong shading. Also known as Phong illumination model, this
algorithm works with various properties such as a
objectbds ambient, di ffuse and specul aerized i ght . Th
separately during the rendering process in order to express various light effects.

In rendering, the triangles are created based on the information of their actual coordinates, which add
up to constructing objects given with their own material priggee As mentioned earlier, an object
consists of a set of triangles or primitives, one of which is the minimum unit in a three dimensional
space. The coordinates of triangles eventually determine the shape of an object in a three dimensional
space.

7.1 Triangle

Triangles play a very important role in 3D graphics, one of which is the smallest unit used to
represent an object. Points, lines and surfaces also play the similar role; however, there are some
technical difficulties to express lines and point inr@¢hdimensional space. Theoretically, the sum of
points form a line, and the sum of lines form a surface. When it gets closer to a line with the
significant number of points, there mayist some spaces in between the points. In this case, the

number of pits may not be sufficient. The challenge arises from the fact that it is hard to decide

73

RayCore® Programming Guide Version 1.0

how many points are sufficient enough to express a line, since the unlimited number of midpoints
may exist in between two points forming a line. Using segments maybalsconsidered as an
alternative way to construct a line. That is, the midpoints in between two points can be created
repeatedly in every arithmetic operation, the number of the midpoints created will be sufficient
enough. Therefore, a surface can be esged in the same way. This process is called the vector
graphics.

A surface can be formed using multiple triangles. In addition, a curved surface such as the surface of
a ball can also be expressed by a set of smaller triafglangles are used for atng not only for

flat surfaces but alscomplicated objects. This is why a triangle is used as a basic unit.

a. Vertex List

In a triangle configuration, vertex data is collected in a set. One triangle consists of three vertices. In
order to generate a trigle, two methods are used. The first method generates a triangle by storing
three vertices sequentially. The second method uses the index values of the stored vertices.

I n gener al, the data of a triangl ebs theierti ces
corresponding information such as normal vectors and texture coordinates. On the other hand, the
indices consist of integers. In the first case, the data size may increase if a triangle is made by suing

the same coordinates more than once. Howernehd second case, the actual data size of vertices

may decrease even with the overlap. Even though the memory usage may decrease with the smaller
data size of vertices, additional index information may be needed as the data size becomes smaller.
Therefore the optimal method should be used selectively depending on the types of storing objects.

b. Vertex Data

Vertex data can be stored in various structures. Necessary coordinates in (x, y, z) must be stored in
the same type in the same order of x, y and z spamrdingly. Vertex information can be stored
together with the information of material properties. In this case, whether to store vertex information
with the information of material properties need to be specified by a function that transfers the data.

void rcVertexPointer (RCint size RCenuntype RCsizeistride, const RCvoid *pointer);

This function is used to input the vertex data stored in an array. It providesgzéend type
information of the input data for verticesze the number of coordinates(x, y, z) for vertex d
is always 3.type supportsRC_BYTE, RC_SHORT, RC_FLOAT and RC_FIXED. stride
specifies the byte offset between verticgisideis either O or the actual size if the data cong
of only the coordinatesf each vertexThis function inputs the address of the actual dat
pointer.

74

h

RayCore® Programming Guide Version 1.0

| |r-r-r.':.x |r-r-=':.xr-r*-=':.x

I|D'{ﬂ'—lh‘-=:HD'{ﬂ—lN‘-ﬂ.}{

Figure 31. Data storing

void rcTexCoordPointer (RCintsize RCenuntype RCsizeistride,
const RCvoid *pointer);

This function inputs the array of texture coordinates data for vertices. It also providazet]
andtypeinformation of the input data for verticesize the number of texture coordinates (u,
is only 2.type suppots RC_BYTE, RC_SHORT, RC_FLOAT and RC_FIXED. stride
specifies the byte offset between the texture coordinates of two adjacent vertices. If t
consists of only the texture coordinates of each vertex, O or the actual value can Behis
function inputs the address of the actual dajaointer.

Since only 2D textures are supported, only 2 texture coordinates in (u, v) should be used.

void rcNormalPointer (RCenuntype RCsizeistride, const RCvoid pointep;

This function inputs the array of data for normal vectors. Also, it tells/ffeinformation of the
data.type supportsRC_BYTE, RC_SHORT, RC_FLOAT andRC_FIXED. stride specifies
the byte offset between normal vectors. If the data consists of only the coordinates
normal vector, 0 or the actual size is used. This function inputs the address of the actual
pointer.

Since normal vectors are always expresisgdhree coordinates in (x, y, Zizeis not assigned.
When a vertex array is configured, the position and the material properties of an object should not be

included in a single array. For example, (XRYGZB) does not exist. The location informatiadl as w

75

RayCore® Programming Guide Version 1.0

as other types of information for an object should be stored sequentially.

Each component consists of three elements. The information of location is expressed by XYZ,
whereas the information of color is expressed by RGB. However, the information tafetex
coordinates is expressed by two elements, UV. Other cases are not supported in the current version of
RayCoré€ API.

7.2 Creation of Triangles

Vertex data is input using vertex arrays. If the data is composed of triangles in a sequential order, it
can be ged as it is. Otherwise, vertex indices should be applied to compose a new triangle. When
vertex indices are implemented, no vertices need to be duplicated when their data is stored; therefore,
the data size can be reduced. Depending on the situatiog,vesibex indices becomes a very useful
method in the aspect of data size management. Ray@Biesupports both methods above.

a. Vertex Sequence

Since vertex data is used repeatedly, the efficiency of memory usage decreases. However, sequential
processing ipossible.

void rcDrawArray (RCenummode RCintfirst, RCsizeicoun);

This function generates triangles based on the order of each vertex beingrstateitlustrates
the method of creating triangles, which suppof®C_TRIANGLES, RC_QUADS,

RC_TRIANGLE_FAN and RC_TRIANGLE_STRIP . Calling rcVertexPointer determineq
first, the index for the first vertex of the first triangle in an array of vertioesntspecifies thg

number of vertices to be processed. This last index becfinstesount1.

b. Vertex Index List

Since identical vertex data is shared, memory usage significantly decreases. However, the bandwidth
may become bigger due to the rsgguential order of vertices.

76

RayCore® Programming Guide Version 1.0

void rcDrawElements (RCenummode RCsizeicount RCenuntype RCvoid %indices;

This function generates triangles based on the order of each vertex beingrstteitiustrates
the method of creating triangles, which suppo®C TRIANGLES, RC_QUADS,
RC_TRIANGLE_FAN andRC_TRIANGLE_STRIP . countspecifies the number of irchs
in an index list for the array determined lm)/ertexPointer type specifies the data type of ti
list. indicesspecifies the data address of the list.

77

RayCore® Programming Guide Version 1.0

Chapter 8 Rendering Start

Because RayCofeuses backward rendering, tiséarting point of rendering should be specified.
After all the objects to render are loaded, the rendering process commences.

Below function specifies the starting point of rendering.

void rcFinish (void);

This function indicates the starting point ndering. It also determines if the target dat

loaded completely before staring rendering.

8.1 Example

rcFinish() has no sample codes because it is already specified R€lfeameWorkexplained in
Appendix A. Therefore, it does not need to be called separately.

78

RayCore® Programming Guide Version 1.0

Chapter 9 Static/Dynamic Objects

After loading all objects into memory, which are necessary to generate images, Rast@dse
rendering. Also, thacceleration structure of each data is created before R&}/@ankers the objects

by ray tracing. The generation of acceleration structures requires repetitive computational operations
which lead to the decrease in the overall rendering speed. This rchapaduces the concept of

static and dynamic objects which resolve the problem of low rendering speed with many
computations for creating acceleration structures.

The most typical example of application programs in-tiea¢ 3D graphics is games wheretibo

static and dynamic objects are widely applied. Static objects mostly express backgrounds in games,
whereas dynamic objects are moving within the backgrounds. Musicals may demonstrate an
excellent example of the application of static and dynamic objéttmusicals, stages may be
considered as static objects, which do not change until certain act is finished. However, actors keep
moving around the stage within the current single act and therefore may represent dynamic objects.

There is no such distinctioin rasterization because all trianglesr primitives are processed in a
sequentiabrder However, since primitives are recycled in ray tracing, the stored primitives need to
be maintained continuously. Similarly, if there are no changes made to ct@itts, the exact
information of the static objects stored in memory can be recycled. As a result, rendering speed can
be improved by decreasing the significant amount of costs for creating acceleration structures and
loading data.

When data is distinguied between static and dynamic objects, the speed of data processing can be
improved. Below explains how an object is given static property.

79

RayCore® Programming Guide Version 1.0

9.1 Object Classification

An object can be expressed with thdimensional coordinates. An object consists of a singl
triangle or multiple triangles. For example, multiple triangles form an object which may express an
arm or a leg of an animation character, or form a map in a space where characters are moving. Such
classification of objects can be decided accordindhéostcene or can be decided according to the
specified scenario which belongs to the scene.

In rasterization, all objects are regarded as only dynamic objects. R8yBegins to generate
images after the transfer of all data to the renderer is comple¢zd, RayCor® renderer does not
distinguish objects based on the movement status, but based on whether or not to render the objects.
In ray tracing, however, it is not easy to decide whether to render an object, since objects outside
frustum may affect fial images by the reflection and refraction of rays. Basically, the renderer is not
capable of identifying an object is static or moving. The renderer is purely responsible for generating
images based on the input data. In other words, it does not haymlailita to interpret images.
Classifying the dynamic and static objects is made depending on whether the renderer recreates the
acceleration structure.

The dynamic or static status of an object needs to be managed separately by users in application
prograns.

a. Dynamic Object

Dynamic objects are objects that are moving in a certain scene. If a stationary object starts moving, it
becomes a dynamic object. In general, a dynamic object means a moving object. In application
programs such as games, howedgnamic objects may refer to anything that may move.

Designating an object as a dynamic object means the repetitive creation of acceleration structures. In
general, building acceleration structures is considered as a process that is performed prior to
rencering. In ray tracing or interactive rendering, however, it should be understood as a process
performed during the rendering process.

An object that is not static is identified as a dynamic object. In other words, every input data has
potential dynamic stas.

In games, characters are good examples of dynamic objects. Characters that are continuously moving
have interactive relationships with users. Objects
can still be designated as dynamic objects, becauses dan be opened or closed in a given situation.

Of course, characters that do not need to move at all may be given the static status.

b. Static Object

80

RayCore® Programming Guide Version 1.0

An object is given the static status by a programmer when it is not expected to move or does not need
to move in a certain scene. When an object becomes a static object, the object is assumed not moving.

When an object is specified as a static object, the acceleration structure for that object is recycled
without having to be recreated for every scene. Tdgycling reduces the computations for building
acceleration structures. Modification of acceleration structures that are already created is not
recommended, since it may deteriorate rendering performance. Hence, acceleration structures should
be regenerad if they need modification for some reason. In this case, the repetition of creating
acceleration structures makes no difference with using dynamic objects. In other words, if the objects
do not need acceleration structures for a certain period of $igting those objects as static objects
would be more efficient. For instance, the backgrounds and landscapes in games, which do not need
to be updated for a given scene, may be given the static property.

c. Static Objects with Dynamic Property

Imagine an exaple in which some part of a static object is moving. In this case, the acceleration
structures for the other part of the static object as well as other dynamic objects should be recreated.
This case makes no difference with originally setting that olajget dynamic object.

When a static object is changed to a dynamic object, it becomes ambiguous to determine if the object
is static or dynamicWhen the movementstatusof objects changes, distinguishing the objects as
dynamic or static objects nextb bedeterminecefficiently. In some cases, the composition form of

the static and dynamic objects may affect rendering speed. In this case, the separate management for
those objects needs to be implemented and hence may cause additional computational costs.

RayCoré& API does not support automatic processing for objects with both properties, because the
processing type of uppésvel application programs are different from each other. Therefore, a
separate management for such type of objects needs to beeceddimt each application program.

Important key points are the following:

A Acceleration structures for static objects will not be recreated unless they are initialized.

A When static objects are not used, object information needs to be initialized seithat th
data is not used.

A Objects that are not selected as static objectsarsidered as dynamic objects.

The explanation of how to give the static property to objects will be followed.

9.2 Static Object Programming

81

RayCore® Programming Guide Version 1.0

For dynamic objects, the process explainealvalcan be applied whenever a new scene is generated.
If objects are changed depending on the input value, new data should be loaded after the coordinates
of the objects are transformed to the new position.

a. Programming Model

Simple begirend modelcanbesued t o specify static objects. 't use
beginning of a static object and fiendo function t hz¢

"
[Begin

Draw [(Load Object)

=
[End
r

Figure 32. Beginning and ad of a static object

b. Function List

When specifying a static object, the functions for basic loading, transformation, and material setting
are used in the same way as the functions are used for dynamic objects. The beginning and end of
loading a statiobject are also specified. RayC®B#&P| supports the function for such process. In
addition, RayCor@API supports a separate function uses or deletes static objects.

Below is the function that initializes or deletes static objects.

void rcScereAlllnit (void);

This function initializes static objects. When static objects are being used, this function
these static objects.

Below is the function that indicates the beginning and end of loading static objects.

void rcStaticSceneBegin(void);

82

RayCore® Programming Guide Version 1.0

This function tells when loading static object data begins. All data loaded without the fu
called is stored as data for dynamic objects. Therefore, when static objects are nee(
function must be called.

Below is the function that indicatéise completion of loading static objects.

void rcStaticSceneEnd(void);

This function indicates the completion of loading static objects. It also tells when the creg
acceleration structures begins.

9.3 Notes

There are a couple of programming ruleat need to be satisfied for static objects.

A The static object should not be specified separately.
A The static object data should be loaded in front of memory area for rendering data.

Based on the above programming rules, users need to keep in mpuirttsebelow.

A Only single static object is used in a single scene.
A Static objects need to be created in prior to dynamic objects.

9.4 Sample Codes (Cornell Box')

The following examples show how to define static background by using extended functions.

a. Initialization

Basic initial parameters are defined as follows:
rcSceneAlllnit();
rcClearColor(0.0f, 0.2f, 0.4f, 1.0f);

rcMatrixMode(RC_PROJECTION);
rcLoadldentity();

: Designed in Cornell University

83

RayCore® Programming Guide Version 1.0

rcFrustum{1, 1,-0.6f, 0.6f, 1.7, 1000);
rcuLookAt(27.8, 27.3;80.0, 27.8, 27.30, 0, 1, 0);

rcStaticSceneBegin();
rcEnableClientState(RC_VERTEX_ARRAY);

rcVertexPointer(3, RC_FLOAT, 0, Left_Wall);
rcGenMaterials(1, &materiallD[0]);
rcBindMaterial(materiallD[0Q]);
rcMaterialfv(RC_FRONT_AND_BACKRC_DIFFUSE,&Red.r);
rcDrawArrays(RC_TRIANGLES, 0, 6);

rcVertexPointer(3, RC_FLOAT, 0, Right_Wall);
rcGenMaterials(1&materiallD[1]);

rcBindMaterial(materiallD[1]);
rcMaterialfv(RC_FRONT_AND_BACK, RC_DIFFUSE,&Green.r);
rcDrawArrays(RC_TRIANGLES, 0, 6);

rcVertexPointer(3RC_FLOAT, 0, Floor);

rcGenMaterials(1, &materiallD[2]);

rcBindMaterial(materiallD[2]);
rcMaterialfv(RC_FRONT_AND_BACK, RC_DIFFUSE, &White.r);
rcDrawArrays(RC_TRIANGLES, 0, 6);

rcVertexPointer(3, RC_FLOAT, 0, Ceiling);

rcGenMaterials(1, &materiallD[3]);

rcBindMaterial(materiallD[3]);
rcMaterialfy(RC_FRONT_AND_BACK, RC_DIFFUSE, &White.r);
rcDrawArrays(RC_TRIANGLES, 0, 6);

rcVertexPointer(3, RC_FLOAT, 0, Back_Wall);
rcGenMaterials(1, &materiallD[4]);
rcBindMaterial(materiallD[4]);
rcMaterialfv(RC_FRONT_AND_BCK, RC_DIFFUSE, &White.r);
rcDrawArrays(RC_TRIANGLES, 0, 6);

rcDisableClientState(RC_VERTEX_ARRAY);
rcStaticSceneEnd();

In the example, there are two boxes inside the backgroundrd®zeneAlllnit() initializes static
objects and sets basic initial parameters. And then, the background box is specified as a static object

in betweerrcStaticSceneBegin(@ndrcStaticSceneEnd()

b. Scene Rendering

Scene rendering consists of two stages: defining lightseitithg vertex data.

Four lights are on the ceiling. Each light can be switched on and off. When lights are not activated, a

basic light is set automatically at the viewpoint.

rcMatrixMode(RC_MODELVIEW);
rcLoadldentity();

84

rcRotatef(g_fSpinY, 1.0f, 0.0f0.0f);
rcRotatef(g_fSpinz, 0.0f, 1.0f, 0.0f);

if (Light){

rcEnable(RC_LIGHTING);
rcLightfv(RC_LIGHTO,RC_AMBIENT, Light_Ambient);
rcLightfv(RC_LIGHTO,RC_DIFFUSE Light_Diffuse);

rcLightfv(RC_LIGHTO,RC_POSITION Light_Position1);
rcEnable(RC_LIGHTO);

rcLightfv(RC_LIGHT1,RC_AMBIENT, Light_Ambient);
rcLightfv(RC_LIGHT1, RC_DIFFUSEL.ight_Diffuse);
rcLightfv(RC_LIGHT1, RC_POSITION, Light_Position2);
rcEnable(RC_LIGHT1);

rcLightfv(RC_LIGHT2, RC_AMBIENT, Light_Ambient);
rcLightfv(RC_LIGHT2, RC_DIFFUSELight_Diffuse);
rcLightfv(RC_LIGHT2, RC_POSITIONLight_Position3);
rcEnable(RC_LIGHT?2);

rcLightfv(RC_LIGHT3, RC_AMBIENT Light_Ambient);
rcLightfv(RC_LIGHT3, RC_DIFFUSELight_Diffuse);
rcLightfv(RC_LIGHT3, RC_POSITION, Light_Position4);
rcEnable(RC_LIGHT3);

} else

rcDisable(RC_LIGHTING);

c. Drawing Objects

RayCore® Programming Guide Version 1.0

There are two boxes. One is static, but the other is jumping. This type of dynamic object is processed

in rendering loopwhich is processed in an equivalently manner in OpenGL programming.

rcEnableClientState(RC_VERTEX_ARRAY);

rcPushMatrix();

{

}

if (dir)
aniy += 0.1;
else
aniy-=0.1;

if (aniy < 0) {
aniy = 0;
dir = true;
} else if (aniy > 10) {
aniy = 10;
dir = false;
}

rcTranslatef(0, aniy, 0);

rcVertexPointer(3, RC_FLOAT, 0, Short_Block);
rcBindMaterial(MateriallD_ShortBlock);

85

RayCore® Programming Guide Version 1.0

rcColor4f(Whitel.r, Whitel.g, Whitel.b),0
rcDrawArrays(RC_TRIANGLES, 0, 30);
rcPopMatrix();

rcVertexPointer(3, RC_FLOAT, 0, Tall_Block);
rcBindMaterial(MateriallD_TallBlock);
rcColor4f(White2.r, White2.g, White2.b, 0);
rcDrawArrays(RC_TRIANGLES, 0, 30);

rcDisableClientState(RC_VERTEX_ARRAY);

d. Vertex Data

Vertex data is as follows:

Pos Left_Wall[] = {
{55.28, 0.0, 0.0}, {54.96, 0.0, 55.92}, {55.60, 54.88, 55.92},
{55.28, 0.0, 0.0}, {55.60, 54.88, 55.92}, {55.60, 54.88, 0.0}
5
Pos Right_Wall[] ={
{0.0, 54.88, 0.0}, {0.0, 54.88, 55.92}, {0.0, 0.0, 55.92},
{0.0, 54.88, 0.0}, {0.0, 0.0, 55.92},{0.0,0.0, 0.0}

h
Pos Floor[] ={
{55.28, 0.0, 0.0}, {0.0, 0.0, 0.0},{ 0.0, 0.0, 55.92},
{55.28, 0.0, 0.0}, {0.0, 0.0, 55.92}, {54.96).0, 55.92}
h
Pos Ceiling[] = {
{55.60, 54.88, 0.0}, {55.60, 54.88, 55.92}, {0.0, 54.88, 55.92},
{55.60, 54.88, 0.0}, { 0.0, 54.88, 55.92}, {0.0, 54.88, 0.0}
h

Pos Back_Wall[] = {
{0.0, 54.88, 55.92}, {55.60, 54.88, 55.92}, {54.96, 0.6,%2},
{0.0, 54.88, 55.92}, {54.96, 0.0,55.92},{ 0.0, 0.0, 55.92}

h

Pos Short_Block[] = {
{13.0, 16.5, 6.5}, { 8.2, 16.50, 22.5}, {24.0, 16.5, 27.2},
{13.0,16.5, 6.5}, {24.0, 16.50, 27.2}, {29.0, 16.5, 11.4},
{29.0, 0.0, 11.4},{29.0, 16.50, 11.4}, {24.0, 16.5, 27.2},
{29.0, 0.0,11.4}, {24.0, 16.50, 27.2}, {24.0, 0.0, 27.2},
{13.0, 0.0, 6.5}, {13.0, 16.50, 6.5}, {29.0, 16.5, 11.4},
{13.0, 0.0, 6.5}, {29.0, 16.50, 11.4}, {29.0, 0.0, 11.4},
{8.2, 0.0,225} { 8.2,16.50, 22.5}, {13.0, 16.0, 6.5},
{8.2, 0.0,225},{13.0,16.50, 6.5}, {13.00.0, 6.5},
{24.0, 0.0,27.2}, {24.0, 16.50, 27.2}, {8.20, 16.5, 22.5},
{24.0, 0.0,27.2},{8.2, 16.50, 22.5}, {8.20, 0.0, 22.5}

b

PosTall_Block[] = {
{42.3, 33.0, 24.7}, {26.50, 33.0, 29.6}, {31.40, 33.0, 45.6},
{42.3, 33.0, 24.7}, {31.40, 33.0, 45.6}, {47.20, 33.0, 40.6},
{42.3, 0.0, 24.7}, {42.30, 33.0, 24.7}, {47.20, 33.0, 40.6},
{42.3, 0.0,24.7}, {47.20, 33.0, 46}, {47.20, 0.0, 40.6},
{47.2, 0.0, 40.6}, {47.20, 33.0, 40.6}, {31.40, 33.0, 45.6},
{47.2, 0.0, 40.6}, {31.40, 33.0, 45.6}, {31.40, 0.0, 45.6},
{31.4, 0.0, 45.6}, {31.40, 33.0, 45.6}, {26.50, 33.0, 29.6},
{31.4, 0.0, 45.6}, {26.50, 3.0, 29.6}, {26.50, 0.0, 29.6},
{26.5, 0.0, 29.6}, {26.50, 33.0, 29.6}, {42.30, 33.0, 24.7},
{26.5, 0.0, 29.6}, {42.30, 33.0, 24.7}, {42.30, 0.0, 24.7}

86

RayCore® Programming Guide Version 1.0

e. Rendering Result

Figure 33. Rendering result

87

RayCore® Programming Guide Version 1.0

Appendix A.
Framework

#ifndef _ EGL_FRAMEWORK_H_
#define _ EGL_FRAMEWORK_H_
#ifdef WIN32
#include "platform/WindowsPlatform.h"
#ifndef RC_FRAMEWORK
#pragma comment(lib, "RCFramework.lib")
#endif
#else
#include "platform/X11Platform.h"
#endif

classRCFramework :
protected WindowPlatform

{

protected:
virtual ~RCFramework(void);

public:
RCFramework(const char* sTitleName, int width, int height);

BOOL Initialize(void);
void Release(void);
BOOL DrawScene(void);

inline EGLDisplay CurrentDisplgvoid) {return m_egIDisplay;}
inline EGLContext CurrentContext(voidjeturn m_eglContext;}
inline EGLSurface CurrentSurface(voidjeturn m_eglSurface;}
inline int Width(void) {return m_iWidth;}
inline int Height(void) {return m_iHeight;}

88

RayCore® Programming Guide Version 1.0

protected:
virtual BOOL Onlntialize(void);
virtual void OnRelease(void);
virtual BOOL OnDraw(void);
virtual BOOL OnPostDraw(void);

private:
EGLDisplay m_eglDisplay;
EGLContext m_eglContext;
EGLSurface m_eglSurface;
int m_iWidth, m_iHeight;
const char* m_sTitle;

2

#endif//_EGL_FRAMEWORK_H__

89

RayCore® Programming Guide Version 1.0

Appendix B.
Example Programs

RayCoré& programming model consists of two stagieglobal initialization stage and data transfer
stage. In global initialization stagthe global values such as frustum, view point and texture data
which is used in rendering are specified. In data transfer stage, the data row that holds geometry
transformation is transferred. Based on above gathered information, the final image t$ useae
RayCoré& hardware, a hardware which implements ray tracing algorithm. Data transfer stage is
repeated in each scermmad through this procesise control event is managed between the scenes.

1.1 Cube Object

This is a programming example of a cube widxture. As described in the first paragraph,

programming is done in two stages.

a. Scene Initialization

In the initial setting stage, a couple of settings are made by Rdy&Bte

The background color is set to black (0, 0, 0, 1). If the ray doettawsect with an object, the

background color is stored in the frame buffer.

The depth test is not required in RayCorven if the depth test is set to activate, this will not affect

the scene.

The projection matrix can be specified by frustum inforomatiThis step is same as that of OpenGL.

Unlike in OpenGL where the view point is always set to origion, ray tracing can utilize any

90

RayCore® Programming Guide Version 1.0

coordinate.rcuLookAt function can be used to set the view point and this does not influence the

projection matrix.

rcCleacColor(0.0f, 0.0f, 0.0f, 1.0f);

rcMatrixMode(RC_PROJECTION);

rcLoadldentity();

rcFrustumf(0.9622504483f, 0.96225044830,.577350269f, 0.577350269f, 1, 100);
rcuLookAt(0, 0, 1, 0,0, 0, 0, 1, 0);

b. Texture Load

Multiple textures can be used in the scend®sE textures are loaded prior to rendering. Initially, the
texture objects are generated by usic@enTextures Each texture ID is stored in array buffer. The
current texture ID is specified by buffer ID before calling the texture loading function.réestu
loaded to nth texture object through current ID. All texture images are loaded by setting the current
ID and by loading data. In this programming example, six textures are used in all sides of the cube.

Texture is used as mipmap by usinegeximagefunction.

Texture is designed for ofieme loading process because loading textures for every scene is a huge

burden.

rcGenTextures(6, TextureArray);

rcBindTexture(RC_TEXTURE_2D, TextureArray[Blender]);

rcTeximage2D(RC_TEXTURE_2D, 0, RC_RGB,
pBitmap[Bender}>sizeX, pBitmap[BlendefpsizeY,
0, RC_RGB, RC_UNSIGNED_BYTE,
pBitmap[Blender]>data);

c. Model

Model can be expressed in two ways. First is the index mode, and second is the sequential triangle
mode. In the index modewo arrays for indices and vertex coordinates are specified. The array of
texture coordinates is added when using texture mapping. Also, the array of normal vectors can be

used for vertex array.

Vertex position is stored in array. This is not used sequbnfide index number is allocated to this

vertex.

Pos g_cubePos_indexed[] ={
{-1.0f,-1.0f, 1.0f}, //O
{1.0f, -1.0f, 1.0f}, 11
{1.0f, 1.0f, 1.0f}, 112
{-1.0f, 1.0f, 1.0}, //3
{-1.0f-1.0f,-1.0f}, /4

91

RayCore® Programming Guide Version 1.0

{-1.0f, 1.0f-1.0f, /5
{1.0f, 1.0,-1.00, /6
{1.0f-1.0f-1.0f, /7

Texture coordinates work in the same way as vertices do. However, because of its usage for 2D
image it is two dimensional. The first vertex uses the first texture coordinate.

TexC g_cubeTexcoord_indexed[] = {
{0.0f, 0.0f}, /10
{1.0f, 0.0f}, 11
{1.0f, 1.0f}, 12
{0.0f, 1.0f}, 13
{0.0f, 0.0f}, 14
{0.0f, 1.0f}, 115
{1.0f, 1.0f}, 116
{1.0f, 0.0f}, n7

The following shows the irek array. The first four indices make a single rectangle and the next four
indices make the next rectangle.

RCubyte g_cubelndices[] =
{

0,1,2,3, //QuadO

4,5,6,7, //Quad1l
5,3,2,6, //Quad?2
4,7,1,0, //Quad3
7,6,2,1, //Quad4
4,0,3,5 //Quad5

Sequential data mode is stored without indices. The same vertex is stored repeatedly; however, the
rectangle is created sequentially as shown in the following code.

Pos g_cubePos[] =
{
/I Quad 0
{-1.0f,-1.0f, 1.0f}, // O (unique)
{1.0f, -1.0f, 1.0f}, /I 1 (unique)
{1.0f, 1.0f, 1.0f}, /I 2 (unique)
{-1.0f, 1.0f, 1.0f}, /I 3 (unique)
// Quad 1
{-1.0f,-1.0f,-1.0f}, // 4 (unique)
{-1.0f, 1.0f,-1.0f}, // 5 (unique)
{1.0f, 1.0f,-1.0f}, /I 6 (unique)
{1.0f, -1.0f,-1.0f}, // 7 (unique)
/I Quad 2
{-1.0f, 1.0f,-1.0f}, // 5 (start repeating here)
{-1.0f, 1.0f, 1.0f}, /I 3 (repeat of vertex 3)

92

{1.0f, 1.0f, 1.0f},
{1.0f, 1.0f,-1.0f},
/I Quad 3
{-1.0f,-1.0f,-1.0f},
{1.0f, -1.0f,-1.0f},
{1.0f, -1.0f, 1.0},
{-1.0f,-1.0f, 1.0f},
/I Quad 4

{1.0f, -1.0f,-1.0f},
{1.0f, 1.0f,-1.0f},
{1.0f, 1.0f, 1.0f},
{1.0f, -1.0f, 1.0},
/I Quad 5
{-1.0f,-1.0f,-1.0f},
{-1.0f,-1.0f, 1.0f},
{-1.0f, 1.0f, 1.0},
{-1.0f, 1.0f;1.0f}

d. Scene Rendering

RayCore® Programming Guide Version 1.0

I/l 2 (repeat of veex 2... etc.)

116

114
17
N1
110

n7
116
12
N1

114
110
113
115

The final image igenerated by going through scene rendering process. This process is repeated until

the program terminates. Three factors such as light setting, geometry transformation and dynamic

object data needs to be specified.

Even if the light sources are not configd, RayCor API sets one light source in view point. This

is because the final color cannot be shown without light source. In this programming example, the

light source is not set.

Geometry transformation is set just like the way it is done in OpenGldeMaew matrix is

generated by using transformation functions suchc@sanslatef, rcRotatef rcScalef This model

view matrix is calculated based on the coordinates of each vertex. Vertex array and texture

coordinates array is activated by usmgnableClientState

rcMatrixMode(RC_MODELVIEW);

rcLoadldentity();
rcTranslatef(0.0f, 0.0£6.0f);

rcRotatef(g_fSpinY, 1.0f, 0.0f, 0.0f);
rcRotatef(g_fSpinz, 0.0f, 1.0f, 0.0f);
rcEnableClientState(RC_VERTEX_ARRAY);

rcEnableClientState(RC_TEXTURE_COORD_ARRAY)

rcVertexPointerconnects the vertex array address. Texture mapping activated by using the parameter

of RC_TEXTURE_2D is connected to material. Several parameters are transferred for their usage.

rcVertexPointer(3, RC_FLOAT, 0, g_cubePos_indexed);
rcTexCoordPointer(2, RC_FLOAT, 0, g_cubeTexcoord_indexed);

rcBindMaterial(MateriallDs[Blender]);

93

RayCore® Programming Guide Version 1.0

rcEnable(RC_TEXTURE_2D);
rcBindTexture(RC_TEXTURE_2D, TextureArray[Blender]);
rcDrawElements(RC_TRIANGLE_FAN, 4, RC_UNSIGNED_BYT&j_cubelndices[0]);

rcBindMaterial(MateriallDs[Coffeematic]);

rcEnable(RC_TEXTURE_2D);

rcBindTexture(RC_TEXTURE_2D, TextureArray[Coffeematic]);
rcDrawElements(RC_TRIANGLE_FAN, 4, RC_UNSIGNED_BYT&y_cubelndices[4]);
rcVertexPointer(3, RC_FLOAT, 0, g_cubePos);

rcTexCoordPointer(ZRC_FLOAT, 0, g_cubeTexs);

rcBindMaterial(MateriallDs[Blender]);
rcEnable(RC_TEXTURE_2D);
rcBindTexture(RC_TEXTURE_2D, TextureArray[Blender]);
rcDrawArrays(RC_TRIANGLE_FAN, 0, 4);

rcBindMaterial(MateriallDs[Coffeematic]);
rcEnable(RC_TEXTURE_2D)
rcBindTexture(RC_TEXTURE_2D, TextureArray[Coffeematic]);
rcDrawArrays(RC_TRIANGLE_FAN, 4, 4);

e. Rendering result

Figure9. Rendering result

94

RayCore® Programming Guide Version 1.0

Appendix C.
Earth Example

Here is an example of light source movement.

#include "RCFramework.h"
/I Programming Guide Earth Example
#include "earth.h"

typedef struct RGBImageRec {
int sizeX, sizeY;
unsigned char *data;

} RGBImageRec;

typedef struct bmpBITMAPFILEHEADER{
WORD bfType;
DWORD bfSize;
WORD bfReservedl;
WORD bfReserved2;
DWORD bfOffBits;
} BITMAPFILEHEADER];

typedef struct bmpBITMAPINFOHEADER({
DWORD biSize;
DWORD biWidth;
DWORD biHeight;
WORD biPlanes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizelmage;
DWORD biXPelsPerMeter;
DWORD biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrimportant;

} BITMAPFILEHEADERZ?;

RGBImageRec *DIBImagelLoad(char* path, int channel) {
RGBImageRec* pimage=NULL;
FILE *f=NULL;
unsigned char *pBuf=NULL;
int dataSize=0;
int index=0;
DWORD x=0;
DWORD y=0;
int bpp=0;

95

if(channel '=3 && channel '=4) return plmage;

f = fopen(path, "rb");

if(f 1= NULL) {
BITMAPFILEHEADER1 HD1,
BITMAPFILEHEADER2 HD2;

fseek(f,0, SEEK_SET);
fread(&HD1.bfType, sizeof(WORD), 1, f);
fread(&HD1.bfSize sizeof(WORD), 1, f);
fseek(f, 10, SEEK_SET);
fread(&HD1.bfOffBits, sizeof(int), 1f);

fread(&HD2.biSize, sizeof(int), 1, f);
fread(&HD2.biWidth, sizeof(int), 1, f);
fread(&HD2.biHeight, sizeof(int), 1, f);
fread(&HD2.biPlanes, sizeof(WORD), 1, f);
fread(&HD2.biBitCount, sizeof(WORD), 1, f);
fread(&HD2.biCompression, sizeof(int), 1, f);

fseek(f,HD1.bfOffBits,SEEK_SET);

bpp = HD2.biBitCount/8;
if(bpp == 1 || bpp == channel)
{

pBuf = (unsigned char*) malloc(channel);

plmage = (RGBImageRec*) malloieof(RGBImageRec));
plmage>sizeX = HD2.biWidth;
plmage>sizeY = HD2.biHeight;

dataSize = HD2.biWidth*HD2.biHeight*channel;
plmage>data = (unsigned char*) malloc(dataSize);

for(y=0; y<HD2.biHeight; y++) {
for(x=0; x<HD2.biWidth; x++X
fread(pBuf, bpp, 1, f);
if(bpp == 1) {
pBuf{1] = pBuf{2] = pBuf{0];
if(channel == 4) pBuf[3] = 0;

index = (y*HD2.biwidth + x)*channel;
plmage>datafindex] = pBuf{2];
plmage>datafindex + 1]= pBuf{1];
plmage>datafindex + 2]= pBuf{0];
if(channel == 4)

plmage>datafindex + 3] = pBuf[3];

}

if(pBuf) free(pBuf);
pBuf = NULL;

fclose(f);
return plmage;
#define Galaxy 0

#define Earth 1

unsigned int TextwArray[2];
unsigned int MateriallDs[2];

float Light_Position[] = £17.802584, 0.353599, 8.770458, 1};
float Light_Ambient[] = {0, 0, O};

float Light_Diffuse[] = {1, 1, 1};

float Light_Specular[] = {1, 1, 1};

float g_turn = 35;

class Tutorial : publi@CFramework

RayCore® Programming Guide Version 1.0

96

RayCore® Programming Guide Version 1.0

{

public:
Tutorial(void) : RCFramework("Programming GuidEarth Example", 800, 480){}
virtual ~Tutorial(void){}

void Load(RGBImageRec **pBitmap){

pBitmap[0] = (RGBImageRec *)DIBImageLoad("./scenedata/Guide_Earth/Galaxy.bmp", 3);
pBitmap[1] = (RGBImageRec *)DIBImagelLoad("./scenedata/Guide_Earth/Earth.omp”, 3);

void CreateTexture(void){
RGBImageRec *pBitmap[2];
int i=0;

for(i=0; i<2; i++) {
pBitmapl[i] = NULL;

Load(pBitmap);
rcGenTextures(2, TextureArray);

rcBindTexture(RC_TEXTURE_2D, TextureArray[Galaxy]);

rcTeximage2D(RC_TEXTURE_2D, 0, RC_RGB,
pBitmap[Galaxy}>sizeX, pBitmap[GalaxypsizeY,
0, RC_RGB, RC_UNSIGNED BYTE,
pBitmap[Galaxy}>data);

rcBindTexture(RC_TEXTURE_2D, TextureAgigarth]);

rcTeximage2D(RC_TEXTURE_2D, 0, RC_RGB,
pBitmap[Earth}>sizeX, pBitmap[EarthpsizeY,
0, RC_RGB, RC_UNSIGNED_BYTE,
pBitmap[Earth}>data);

for(i=0; i<2; i++) {
if(pBitmapli]) {
if(pBitmap[i]->data)free(pBitmap[i}>data);
free(pBitmapli]);

}

void SetMaterial(void){
float AmbientDiffuse[2][3] = {
{0.588235, 0.588235, 0.588235},
{0.529412, 0.529412, 0.529412},
2

float Specular[2][3] = {
{1,0 0}
b

float Shininess[2]
2.000000,
3.031433,

2
rcEnable(RC_TEXTURE_2D);

rcGenMaterials(1, &MateriallDs[Galaxy]);
rcBindMaterial(MateriallDs[Galaxy]);
rcBindTexture(RC_TEXTURE_2D, TextureArray[Galaxy]);
rcMaterialfv(RC_FRONT_AND_BACK,

RC_AMBIENT_AND_DIFFUSE,

AmbientDiffuse[Galaxy]);
rcMaterialfv(RC_FRONT_AND_BACK, RC_SPECULAR, Specular[Galaxy]);
rcMaterialf(RC_FRONT_AND_BACK, RC_SHININESS, Shininess[Galaxy]);

rcGenMaterials(1, &MateriallDs[Earth]);

rcBindMaterial(MateriallDs[Earth]);

rcBindTexture(RC_TEXTURE_2D, TextureArray[Earth]);
rcMaterialfv(RC_FRONT_AND_BACK, RC_AMBIENT_AND_DIFFUSE, AmbientDiffuse[Earth]);
rcMaterialfv(RC_FRONT_AND_BACK, RC_SPECULAR, Specular[Earth]);
rcMaterialf(RC_FRONT_AND_BACK, RC_SHININESS, Shinirsggarth]);

97

void StaticSceneDraw(void){
RCuint materiallD;

float galaxyV[12] = {
-1,-1, O,

1,-1, O,

1, 1, 0,

-1, 1, 0
kh

float galaxyT[8] = {
1,0,
1,1,
0,1

b

rcBindMaterial(MateriallDs[Galaxy]);
rcEnable(RC_TEXTURE_2D);
rcBindTexture(RC_TEXTURE_2D, TextureArray[Galaxy]);

rcStaticSceneBegin();

rcEnableClientState(RC_VERTEX_ARRAY);
rcEnableClientState(RC_TEXTURE_COORD_ARRAY);

rcVertexPointer(3, RC_FLOAT, 0, galaxyV);
rcTexCoordPointer(2, RC_FLOAT, 0, galaxyT);

rcMatrixMode(RC_MODELVIEW);
rcLoadldentity();

rcTranslatef(0, 0;18.0);
rcScalef(8, 4.8, 1);

rcEnable(RC_USE_TEXTURE_NLY);
rcDrawArrays(RC_QUADS, 0, 4);
rcDisable(RC_USE_TEXTURE_ONLY);

rcDisableClientState(RC_VERTEX_ARRAY);
rcDisableClientState(RC_TEXTURE_COORD_ARRAY);

rcStaticSceneEnd();
}

protected:
virtual BOOL Onlintialize(void){

rcDepthBounce(14);

rcSceneAlllnit();

rcClearColor(0.1f, 0.1f, 0.1f, 1.0f);
rcViewport(0, 0, Width(), Height());

rcMatrixMode(RC_PROJECTION);
rcLoadldentity();

rcuPerspective(30, (float)Width() /(float)Height{)Q, 10000);
rcuLookAt(0, 0, 00,0,-1,0, 1, 0);

CreateTexture();
SetMaterial();

{
rcEnable(RC_LIGHTING);

rcEnable(RC_LIGHTO);
rcLightfv(RC_LIGHTO,RC_POSITION Light_Position);
rcLightfv(RC_LIGHTO,RC_AMBIENT, Light_Ambient);
rcLightfv(RC_LIGHTO,RC_DIFFUSE Light_Diffuse);
rcLightfv(RC_LIGHTO,RC_SPECULARLight_Specular)

}

StaticSceneDraw();

RayCore® Programming Guide Version 1.0

98

RayCore® Programming Guide Version 1.0

}

return TRUE;
}

virtual BOOL OnDraw(void){
static inti = 0;
i++; // 3 times loop with each color.
if(IsTestMode() && i>3)return FALSE;

{
rcClear(RC_COLOR_BUFFER_BIT | RC_DEPTH_BUFFER_BIT);

rcMatrixMode(RC_MODELVIEW);
rcLoadldentity();

rcPushMatrix();

rcRotatef(g_turn, 0, 1, 0);

rcLightfv(RC_LIGHTO, RC_POSITION, Light_Position);
rcPopMatrix();

rcTranslatef(0, 0;7.0);
rcRotatef(35, 0, 1, 0);
rcRotatef(15, 1, 0, 0);
rcRotatef(90, 0, 0, 1);

rcEnableClientState(RC_VERTEX_ARRAY);
rcEnableClientState(RC_NORMAL_ARRAY);
rcEnableClientState(RC_TEXTURE_COORD_ARRAY);

rcVertexPointer(3, RC_FLOAT, sizeof(struct Pos), g_EarthVertices);
rcNormalPointer(RC_FLOAT, 0, g_EarthNormals);
rcTexCoordPointer(2, RC_FLOAT, 0, g_EarthTexCoords);

rcBindMaterial(MateriallDs[Earth]);
rcDrawArrays(RC_TRIANGLES, 0, sizeof(gaBhVertices)/sizeof(Pos));

rcDisableClientState(RC_VERTEX_ARRAY);
rcDisableClientState(RC_NORMAL_ARRAY);
rcDisableClientState(RC_TEXTURE_COORD_ARRAY);

g_turn +=5;
if (g_turn == 360)
g_turn =0;
}

return TRUE;

}
h

Tutorial ~ g_Tutorial;

Figure 10. Rendering result

99

RayCore® Programming Guide Version 1.0

Appendix D.
Program Development

Environment Configuration

1.1 Development Environment Configuration for Linux

a. Path Configuration for Library

The libaries which areequired for RayCore® rendering are located in theviollg directory:
for Stratix6 ~/ Ray Corae SIXKr_aAtlitxeM/ app/ I i bd,
forArriaVé ~/ RayCor eSDK_Al t.era_ArriaV/app/lib

o

These libraries should be compiled after configurating its path in symbolicrink6/ et ¢ 6 f ol der .

A Set the folder of libraries that contains provided SDK while writing Makefile.

(e.0.)

32bitlinux:6 ~/ RayCor eSDK_Altera_ArriaV/app/lib/1linux._
64bit |l inux: 0~/ RayCoreSDK_Altera_ArriaV/app/|li
(e.g) LIBDIR := $(LIBDIR) -Istdc++-Ipthread-Im -IX11 Im -IX11 i IRayCoreAPI -

IRCDDK 1IRCHAL i IRCDDIArriaV
AA static libary of O6RCFramework.ad is generat ec

directory when makefile is compiled
A Following are the necessary libraries for applmaitompiling.

[Libraries included in Linux]

100

RayCore® Programming Guide Version 1.0

stdc++, pthread , m, X11 (It is recommended that libgtki2@ is installed in Xlibrary.)

[Dynamic and static libraries of RayC6te
libRayCoreAPI.so, libRCDDK.so, libRCHAL.so, libRCDDIArriaV.so, RCFramework.a

b. Header File Path Configuration

I n order to contain O6include pathd when writing Malk

INC =\
-I$(path that contains example file source cdde)
-l../RCFramework/src \
-1../..1..finclude\
-1../..1..linclude/khronos \
-1../..1..Jinclude/siliconarts

c. Example of Makefile

Copyright (c) | 2010 ~ 2013 Siliconarts, Inc. All Rights Reserved
tutorials
Date :

.SUFFIXES : .cc .0

CXX = $(CROSS)g++
INC =\
-l../RCFramework/src \
-1../..1../include\

-1../../..finclude/khronos \
-1../..1..Jinclude/siliconarts

ifeq ($(LBITS),64)

OS_ARCH :=linux_x64
else
OS_ARCH :=linux_x86
endif

LIBS :=-L../././lib/$(OS_ARCH)

LIBS := $(LIBS)-Istdc++-Ipthread-Im -IX11 -IRayCoreAPI-IRCDDK -IRCHAL -IRCDDIArriaV
CXXFLAGS =$(INC)

SRC_PATH := $(PWD)

OBJS A

$(SRC_PATH)/main.o

SRCS =\
$(SRC_PATH)/main.cpp

TARGET = rc_simpletriangle
all : $(TARGET)

$(TARGET) : $(OBJS)
$(CXX) -0 $@ ../../../llib/RCFramework.a $(OBJS) $(LIBS)

dep:
gccmakedep $(INC) $(SRCS)

clean:
rm -rf $(OBJS) $(TARGET) core

new :
$(MAKE) clean
$(MAKE)

101

RayCore® Programming Guide Version 1.0

1.2 Development Environment Configuration in Windows
a. Library Path Configuration

Before complingusing Visual Studio, libRC.lib needs to be bounded as shown in Figure 36. (Project
Property- Configruation PropetriesLinker - Input - Addtional Dependencies)

Figure 11. RayCor€® lib file configuration in Visual Studio

Dynamiclibraries (.dll files) are bounded as shown in Figure 37. (Project Prop&uwyfigruation
Propetries Linker - Addtional Library Directories)

Figure 12. RayCore” dll file configuration in Visual Studio

ArriavVSystem.dll, | i bRC. d I | RCDDK. dlI I, SystemHAL. dI | under
dynamic | oading during program execution. Therefor e
EXE file of application programs ampe/dt bveds @exded
to User Variable path in Environment Variables (System Propertiégdvancedi Environment

Variablesi 6 GProgram FileSiliconartdRayCoreSDKapplib\é i s added to User Vari ab

102

